- Description:
hallway navigation
Homepage: https://arxiv.org/abs/1709.10489
Source code:
tfds.robotics.rtx.BerkeleyGnmCoryHall
Versions:
0.1.0
(default): Initial release.
Download size:
Unknown size
Dataset size:
1.39 GiB
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'train' |
7,331 |
- Feature structure:
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(2,), dtype=float64, description=Robot action, consists of 2x position),
'action_angle': Tensor(shape=(3,), dtype=float64, description=Robot action, consists of 2x position, 1x yaw),
'discount': Scalar(shape=(), dtype=float64, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(64, 85, 3), dtype=uint8, description=Main camera RGB observation.),
'position': Tensor(shape=(2,), dtype=float64, description=Robot position),
'state': Tensor(shape=(3,), dtype=float64, description=Robot state, consists of [2x position, 1x yaw]),
'yaw': Tensor(shape=(1,), dtype=float64, description=Robot yaw),
}),
'reward': Scalar(shape=(), dtype=float64, description=Reward if provided, 1 on final step for demos.),
}),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
episode_metadata | FeaturesDict | |||
episode_metadata/file_path | Text | string | Path to the original data file. | |
steps | Dataset | |||
steps/action | Tensor | (2,) | float64 | Robot action, consists of 2x position |
steps/action_angle | Tensor | (3,) | float64 | Robot action, consists of 2x position, 1x yaw |
steps/discount | Scalar | float64 | Discount if provided, default to 1. | |
steps/is_first | Tensor | bool | ||
steps/is_last | Tensor | bool | ||
steps/is_terminal | Tensor | bool | ||
steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction | Text | string | Language Instruction. | |
steps/observation | FeaturesDict | |||
steps/observation/image | Image | (64, 85, 3) | uint8 | Main camera RGB observation. |
steps/observation/position | Tensor | (2,) | float64 | Robot position |
steps/observation/state | Tensor | (3,) | float64 | Robot state, consists of [2x position, 1x yaw] |
steps/observation/yaw | Tensor | (1,) | float64 | Robot yaw |
steps/reward | Scalar | float64 | Reward if provided, 1 on final step for demos. |
Supervised keys (See
as_supervised
doc):None
Figure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe):
- Citation:
@inproceedings{kahn2018self,
title={Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation},
author={Kahn, Gregory and Villaflor, Adam and Ding, Bosen and Abbeel, Pieter and Levine, Sergey},
booktitle={2018 IEEE international conference on robotics and automation (ICRA)},
pages={5129--5136},
year={2018},
organization={IEEE}
}