- Description:
Dataset with images of 2 resolutions (see config name for information on the resolution). It is used for density estimation and generative modeling experiments.
For resized ImageNet for supervised learning
(link) see imagenet_resized
.
Homepage: http://image-net.org/small/download.php
Source code:
tfds.datasets.downsampled_imagenet.Builder
Versions:
2.0.0
(default): New split API (https://tensorflow.org/datasets/splits)
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'train' |
1,281,149 |
'validation' |
49,999 |
- Feature structure:
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
image | Image | (None, None, 3) | uint8 |
Supervised keys (See
as_supervised
doc):None
Citation:
@article{DBLP:journals/corr/OordKK16,
author = {A{"{a} }ron van den Oord and
Nal Kalchbrenner and
Koray Kavukcuoglu},
title = {Pixel Recurrent Neural Networks},
journal = {CoRR},
volume = {abs/1601.06759},
year = {2016},
url = {http://arxiv.org/abs/1601.06759},
archivePrefix = {arXiv},
eprint = {1601.06759},
timestamp = {Mon, 13 Aug 2018 16:46:29 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/OordKK16},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
downsampled_imagenet/32x32 (default config)
Config description: A dataset consisting of Train and Validation images of 32x32 resolution.
Download size:
3.98 GiB
Dataset size:
3.05 GiB
Figure (tfds.show_examples):
- Examples (tfds.as_dataframe):
downsampled_imagenet/64x64
Config description: A dataset consisting of Train and Validation images of 64x64 resolution.
Download size:
11.73 GiB
Dataset size:
10.80 GiB
Figure (tfds.show_examples):
- Examples (tfds.as_dataframe):