- Description:
The data has been produced using Monte Carlo simulations. The first 21 features (columns 2-22) are kinematic properties measured by the particle detectors in the accelerator. The last seven features are functions of the first 21 features; these are high-level features derived by physicists to help discriminate between the two classes. There is an interest in using deep learning methods to obviate the need for physicists to manually develop such features. Benchmark results using Bayesian Decision Trees from a standard physics package and 5-layer neural networks are presented in the original paper.
Additional Documentation: Explore on Papers With Code
Source code:
tfds.structured.Higgs
Versions:
2.0.0
(default): New split API (https://tensorflow.org/datasets/splits)
Download size:
2.62 GiB
Dataset size:
6.88 GiB
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'train' |
11,000,000 |
- Feature structure:
FeaturesDict({
'class_label': float32,
'jet_1_b-tag': float64,
'jet_1_eta': float64,
'jet_1_phi': float64,
'jet_1_pt': float64,
'jet_2_b-tag': float64,
'jet_2_eta': float64,
'jet_2_phi': float64,
'jet_2_pt': float64,
'jet_3_b-tag': float64,
'jet_3_eta': float64,
'jet_3_phi': float64,
'jet_3_pt': float64,
'jet_4_b-tag': float64,
'jet_4_eta': float64,
'jet_4_phi': float64,
'jet_4_pt': float64,
'lepton_eta': float64,
'lepton_pT': float64,
'lepton_phi': float64,
'm_bb': float64,
'm_jj': float64,
'm_jjj': float64,
'm_jlv': float64,
'm_lv': float64,
'm_wbb': float64,
'm_wwbb': float64,
'missing_energy_magnitude': float64,
'missing_energy_phi': float64,
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
class_label | Tensor | float32 | ||
jet_1_b-tag | Tensor | float64 | ||
jet_1_eta | Tensor | float64 | ||
jet_1_phi | Tensor | float64 | ||
jet_1_pt | Tensor | float64 | ||
jet_2_b-tag | Tensor | float64 | ||
jet_2_eta | Tensor | float64 | ||
jet_2_phi | Tensor | float64 | ||
jet_2_pt | Tensor | float64 | ||
jet_3_b-tag | Tensor | float64 | ||
jet_3_eta | Tensor | float64 | ||
jet_3_phi | Tensor | float64 | ||
jet_3_pt | Tensor | float64 | ||
jet_4_b-tag | Tensor | float64 | ||
jet_4_eta | Tensor | float64 | ||
jet_4_phi | Tensor | float64 | ||
jet_4_pt | Tensor | float64 | ||
lepton_eta | Tensor | float64 | ||
lepton_pT | Tensor | float64 | ||
lepton_phi | Tensor | float64 | ||
m_bb | Tensor | float64 | ||
m_jj | Tensor | float64 | ||
m_jjj | Tensor | float64 | ||
m_jlv | Tensor | float64 | ||
m_lv | Tensor | float64 | ||
m_wbb | Tensor | float64 | ||
m_wwbb | Tensor | float64 | ||
missing_energy_magnitude | Tensor | float64 | ||
missing_energy_phi | Tensor | float64 |
Supervised keys (See
as_supervised
doc):None
Figure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe):
- Citation:
@article{Baldi:2014kfa,
author = "Baldi, Pierre and Sadowski, Peter and Whiteson, Daniel",
title = "{Searching for Exotic Particles in High-Energy Physics
with Deep Learning}",
journal = "Nature Commun.",
volume = "5",
year = "2014",
pages = "4308",
doi = "10.1038/ncomms5308",
eprint = "1402.4735",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1402.4735;%%"
}