- Description:
Datasets for the MT-Opt paper.
Homepage: https://karolhausman.github.io/mt-opt/
Source code:
tfds.robotics.mt_opt.MtOpt
Versions:
1.0.0
(default): Initial release.
Download size:
Unknown size
Auto-cached (documentation): No
Supervised keys (See
as_supervised
doc):None
Figure (tfds.show_examples): Not supported.
Citation:
@misc{kalashnikov2021mtopt,
title={MT-Opt: Continuous Multi-Task Robotic Reinforcement Learning at Scale},
author={Dmitry Kalashnikov and Jacob Varley and Yevgen Chebotar and Benjamin Swanson and Rico Jonschkowski and Chelsea Finn and Sergey Levine and Karol Hausman},
year={2021},
eprint={2104.08212},
archivePrefix={arXiv},
primaryClass={cs.RO}
}
mt_opt/rlds (default config)
Config description: This dataset contains task episodes collected across afleet of real robots. It follows the RLDS formatto represent steps and episodes.
Dataset size:
4.38 TiB
Splits:
Split | Examples |
---|---|
'train' |
920,165 |
- Feature structure:
FeaturesDict({
'episode_id': string,
'skill': uint8,
'steps': Dataset({
'action': FeaturesDict({
'close_gripper': bool,
'open_gripper': bool,
'target_pose': Tensor(shape=(7,), dtype=float32),
'terminate': bool,
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'gripper_closed': bool,
'height_to_bottom': float32,
'image': Image(shape=(512, 640, 3), dtype=uint8),
'state_dense': Tensor(shape=(7,), dtype=float32),
}),
}),
'task_code': string,
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
episode_id | Tensor | string | ||
skill | Tensor | uint8 | ||
steps | Dataset | |||
steps/action | FeaturesDict | |||
steps/action/close_gripper | Tensor | bool | ||
steps/action/open_gripper | Tensor | bool | ||
steps/action/target_pose | Tensor | (7,) | float32 | |
steps/action/terminate | Tensor | bool | ||
steps/is_first | Tensor | bool | ||
steps/is_last | Tensor | bool | ||
steps/is_terminal | Tensor | bool | ||
steps/observation | FeaturesDict | |||
steps/observation/gripper_closed | Tensor | bool | ||
steps/observation/height_to_bottom | Tensor | float32 | ||
steps/observation/image | Image | (512, 640, 3) | uint8 | |
steps/observation/state_dense | Tensor | (7,) | float32 | |
task_code | Tensor | string |
- Examples (tfds.as_dataframe):
mt_opt/sd
Config description: The success detectors dataset that contains human curated definitions of tasks completion.
Dataset size:
548.56 GiB
Splits:
Split | Examples |
---|---|
'test' |
94,636 |
'train' |
380,234 |
- Feature structure:
FeaturesDict({
'image_0': Image(shape=(512, 640, 3), dtype=uint8),
'image_1': Image(shape=(480, 640, 3), dtype=uint8),
'image_2': Image(shape=(480, 640, 3), dtype=uint8),
'success': bool,
'task_code': string,
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
image_0 | Image | (512, 640, 3) | uint8 | |
image_1 | Image | (480, 640, 3) | uint8 | |
image_2 | Image | (480, 640, 3) | uint8 | |
success | Tensor | bool | ||
task_code | Tensor | string |
- Examples (tfds.as_dataframe):