- Description:
The Stanford Dogs dataset contains images of 120 breeds of dogs from around the world. This dataset has been built using images and annotation from ImageNet for the task of fine-grained image categorization. There are 20,580 images, out of which 12,000 are used for training and 8580 for testing. Class labels and bounding box annotations are provided for all the 12,000 images.
Additional Documentation: Explore on Papers With Code
Homepage: http://vision.stanford.edu/aditya86/ImageNetDogs/main.html
Source code:
tfds.datasets.stanford_dogs.Builder
Versions:
0.2.0
(default): No release notes.
Download size:
778.12 MiB
Dataset size:
744.72 MiB
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'test' |
8,580 |
'train' |
12,000 |
- Feature structure:
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
'image/filename': Text(shape=(), dtype=string),
'label': ClassLabel(shape=(), dtype=int64, num_classes=120),
'objects': Sequence({
'bbox': BBoxFeature(shape=(4,), dtype=float32),
}),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
image | Image | (None, None, 3) | uint8 | |
image/filename | Text | string | ||
label | ClassLabel | int64 | ||
objects | Sequence | |||
objects/bbox | BBoxFeature | (4,) | float32 |
Supervised keys (See
as_supervised
doc):('image', 'label')
Figure (tfds.show_examples):
- Examples (tfds.as_dataframe):
- Citation:
@inproceedings{KhoslaYaoJayadevaprakashFeiFei_FGVC2011,
author = "Aditya Khosla and Nityananda Jayadevaprakash and Bangpeng Yao and
Li Fei-Fei",
title = "Novel Dataset for Fine-Grained Image Categorization",
booktitle = "First Workshop on Fine-Grained Visual Categorization,
IEEE Conference on Computer Vision and Pattern Recognition",
year = "2011",
month = "June",
address = "Colorado Springs, CO",
}
@inproceedings{imagenet_cvpr09,
AUTHOR = {Deng, J. and Dong, W. and Socher, R. and Li, L.-J. and
Li, K. and Fei-Fei, L.},
TITLE = { {ImageNet: A Large-Scale Hierarchical Image Database} },
BOOKTITLE = {CVPR09},
YEAR = {2009},
BIBSOURCE = "http://www.image-net.org/papers/imagenet_cvpr09.bib"}