s3o4d

  • Opis :

Zbiór danych opisany po raz pierwszy w sekcji „Obiekty 3D Stanforda” w artykule Disentangling by Subspace Diffusion . Dane obejmują 100 000 renderowań każdego obiektu Królika i Smoka z Repozytorium Skanowania 3D Stanforda . W przyszłości może zostać dodanych więcej obiektów, ale w artykule wykorzystano tylko Króliczka i Smoka. Każdy obiekt jest renderowany z równomiernie próbkowanym oświetleniem z punktu na 2-sferze i równomiernie próbkowanym obrotem 3D. Prawdziwe stany ukryte są dostarczane jako tablice NumPy wraz z obrazami. Oświetlenie jest podane jako 3-wektor z normą jednostkową, natomiast obrót jest podany zarówno jako kwaternion, jak i macierz ortogonalna 3x3.

Istnieje wiele podobieństw między S3O4D a istniejącymi zbiorami danych porównawczych ML, takimi jak NORB , krzesła 3D , kształty 3D i wiele innych, które obejmują również renderowanie zestawu obiektów w różnych pozach i warunkach oświetlenia. Jednakże żaden z tych istniejących zbiorów danych nie obejmuje pełnej gamy obrotów w 3D – większość obejmuje jedynie podzbiór zmian elewacji i azymutu. Obrazy S3O4D są próbkowane równomiernie i niezależnie od pełnej przestrzeni obrotów i iluminacji, co oznacza, że ​​zbiór danych zawiera obiekty odwrócone do góry nogami i oświetlone od tyłu lub od dołu. Wierzymy, że to sprawia, że ​​S3O4D wyjątkowo nadaje się do badań modeli generatywnych, w których przestrzeń ukryta ma nietrywialną topologię, a także do ogólnych metod uczenia się rozmaitości, w których ważna jest krzywizna rozmaitości.

Podział Przykłady
'bunny_test' 20 000
'bunny_train' 80 000
'dragon_test' 20 000
'dragon_train' 80 000
  • Struktura funkcji :
FeaturesDict({
    'illumination': Tensor(shape=(3,), dtype=float32),
    'image': Image(shape=(256, 256, 3), dtype=uint8),
    'label': ClassLabel(shape=(), dtype=int64, num_classes=2),
    'pose_mat': Tensor(shape=(3, 3), dtype=float32),
    'pose_quat': Tensor(shape=(4,), dtype=float32),
})
  • Dokumentacja funkcji :
Funkcja Klasa Kształt Typ D Opis
FunkcjeDykt
oświetlenie Napinacz (3,) pływak32
obraz Obraz (256, 256, 3) uint8
etykieta Etykieta klasy int64
pozy_mat Napinacz (3, 3) pływak32
pozycja_quat Napinacz (4,) pływak32

Wyobrażanie sobie

  • Cytat :
@article{pfau2020disentangling,
  title={Disentangling by Subspace Diffusion},
  author={Pfau, David and Higgins, Irina and Botev, Aleksandar and Racani\`ere,
  S{\'e}bastian},
  journal={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2020}
}