ConfigProto

מחלקה סופית ציבורית ConfigProto

 Session configuration parameters.
 The system picks appropriate values for fields that are not set.
 
tensorflow.ConfigProto מסוג Protobuf.ConfigProto

כיתות מקוננות

מַחלָקָה ConfigProto.Builder
 Session configuration parameters. 
מַחלָקָה ConfigProto.Experimental
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
מִמְשָׁק ConfigProto.ExperimentalOrBuilder

קבועים

int ALLOW_SOFT_PLACEMENT_FIELD_NUMBER
int CLUSTER_DEF_FIELD_NUMBER
int DEVICE_COUNT_FIELD_NUMBER
int DEVICE_FILTERS_FIELD_NUMBER
int EXPERIMENTAL_FIELD_NUMBER
int GPU_OPTIONS_FIELD_NUMBER
int GRAPH_OPTIONS_FIELD_NUMBER
int INTER_OP_PARALLELISM_THREADS_FIELD_NUMBER
int INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER
int ISOLATE_SESSION_STATE_FIELD_NUMBER
int LOG_DEVICE_PLACEMENT_FIELD_NUMBER
int OPERATION_TIMEOUT_IN_MS_FIELD_NUMBER
int PLACEMENT_PERIOD_FIELD_NUMBER
int RPC_OPTIONS_FIELD_NUMBER
int SESSION_INTER_OP_THREAD_POOL_FIELD_NUMBER
int SHARE_CLUSTER_DEVICES_IN_SESSION_FIELD_NUMBER
int USE_PER_SESSION_THREADS_FIELD_NUMBER

שיטות ציבוריות

בוליאני
containsDeviceCount (מפתח מחרוזת)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
בוליאני
שווה (Object obj)
בוליאני
getAllowSoftPlacement ()
 Whether soft placement is allowed.
ClusterDef
getClusterDef ()
 Optional list of all workers to use in this session.
ClusterDefOrBuilder
getClusterDefOrBuilder ()
 Optional list of all workers to use in this session.
סטטי ConfigProto
ConfigProto
final static com.google.protobuf.Descriptors.Descriptor
מפה<String, Integer>
getDeviceCount ()
השתמש ב- getDeviceCountMap() במקום זאת.
int
getDeviceCountCount ()
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
מפה<String, Integer>
getDeviceCountMap ()
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
int
getDeviceCountOrDefault (מפתח מחרוזת, int defaultValue)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
int
getDeviceCountOrThrow (מפתח מחרוזת)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
חוּט
getDeviceFilters (int index)
 When any filters are present sessions will ignore all devices which do not
 match the filters.
com.google.protobuf.ByteString
getDeviceFiltersBytes (int index)
 When any filters are present sessions will ignore all devices which do not
 match the filters.
int
getDeviceFiltersCount ()
 When any filters are present sessions will ignore all devices which do not
 match the filters.
com.google.protobuf.ProtocolStringList
getDeviceFiltersList ()
 When any filters are present sessions will ignore all devices which do not
 match the filters.
ConfigProto.Experimental
getExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
ConfigProto.ExperimentalOrBuilder
getExperimentalOrBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
GPUOptions
getGpuOptions ()
 Options that apply to all GPUs.
GPUOptionsOrBuilder
getGpuOptionsOrBuilder ()
 Options that apply to all GPUs.
GraphOptions
getGraphOptions ()
 Options that apply to all graphs.
GraphOptionsOrBuilder
getGraphOptionsOrBuilder ()
 Options that apply to all graphs.
int
getInterOpParallelismThreads ()
 Nodes that perform blocking operations are enqueued on a pool of
 inter_op_parallelism_threads available in each process.
int
getIntraOpParallelismThreads ()
 The execution of an individual op (for some op types) can be
 parallelized on a pool of intra_op_parallelism_threads.
בוליאני
getIsolateSessionState ()
 If true, any resources such as Variables used in the session will not be
 shared with other sessions.
בוליאני
getLogDevicePlacement ()
 Whether device placements should be logged.
אָרוֹך
getOperationTimeoutInMs ()
 Global timeout for all blocking operations in this session.
int
getPlacementPeriod ()
 Assignment of Nodes to Devices is recomputed every placement_period
 steps until the system warms up (at which point the recomputation
 typically slows down automatically).
RPCOptions
getRpcOptions ()
 Options that apply when this session uses the distributed runtime.
RPCOptionsOrBuilder
getRpcOptionsOrBuilder ()
 Options that apply when this session uses the distributed runtime.
int
ThreadPoolOptionProto
getSessionInterOpThreadPool (int index)
 This option is experimental - it may be replaced with a different mechanism
 in the future.
int
getSessionInterOpThreadPoolCount ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
רשימה< ThreadPoolOptionProto >
getSessionInterOpThreadPoolList ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
ThreadPoolOptionProtoOrBuilder
getSessionInterOpThreadPoolOrBuilder (int index)
 This option is experimental - it may be replaced with a different mechanism
 in the future.
רשימה<? מרחיב את ThreadPoolOptionProtoOrBuilder >
getSessionInterOpThreadPoolOrBuilderList ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
בוליאני
getShareClusterDevicesInSession ()
 When true, WorkerSessions are created with device attributes from the
 full cluster.
final com.google.protobuf.UnknownFieldSet
בוליאני
getUsePerSessionThreads ()
 If true, use a new set of threads for this session rather than the global
 pool of threads.
בוליאני
hasClusterDef ()
 Optional list of all workers to use in this session.
בוליאני
hasExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
בוליאני
hasGpuOptions ()
 Options that apply to all GPUs.
בוליאני
hasGraphOptions ()
 Options that apply to all graphs.
בוליאני
hasRpcOptions ()
 Options that apply when this session uses the distributed runtime.
int
בוליאנית סופית
סטטי ConfigProto.Builder
סטטי ConfigProto.Builder
newBuilder (אב טיפוס ConfigProto )
ConfigProto.Builder
סטטי ConfigProto
parseDelimitedFrom (קלט InputStream)
סטטי ConfigProto
parseDelimitedFrom (קלט InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
סטטי ConfigProto
parseFrom (נתוני ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
סטטי ConfigProto
parseFrom (קלט com.google.protobuf.CodedInputStream)
סטטי ConfigProto
parseFrom (נתוני byte[], com.google.protobuf.ExtensionRegistryLite extensionRegistry)
סטטי ConfigProto
parseFrom (נתוני ByteBuffer)
סטטי ConfigProto
parseFrom (קלט com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
סטטי ConfigProto
parseFrom (נתוני com.google.protobuf.ByteString)
סטטי ConfigProto
parseFrom (קלט InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
סטטי ConfigProto
parseFrom (נתוני com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
סטָטִי
ConfigProto.Builder
בָּטֵל
writeTo (פלט com.google.protobuf.CodedOutputStream)

שיטות בירושה

קבועים

גמר סטטי ציבורי ALLOW_SOFT_PLACEMENT_FIELD_NUMBER

ערך קבוע: 7

גמר סטטי ציבורי CLUSTER_DEF_FIELD_NUMBER

ערך קבוע: 14

סופי סטטי ציבורי DEVICE_COUNT_FIELD_NUMBER

ערך קבוע: 1

אינט גמר סטטי ציבורי DEVICE_FILTERS_FIELD_NUMBER

ערך קבוע: 4

אינט סופי סטטי ציבורי EXPERIMENTAL_FIELD_NUMBER

ערך קבוע: 16

אינט סופי סטטי ציבורי GPU_OPTIONS_FIELD_NUMBER

ערך קבוע: 6

אינט סופי סטטי ציבורי GRAPH_OPTIONS_FIELD_NUMBER

ערך קבוע: 10

אינט גמר סטטי ציבורי INTER_OP_PARALLELISM_THREADS_FIELD_NUMBER

ערך קבוע: 5

גמר סטטי ציבורי INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER

ערך קבוע: 2

גמר סטטי ציבורי ISOLATE_SESSION_STATE_FIELD_NUMBER

ערך קבוע: 15

אינט סופי סטטי ציבורי LOG_DEVICE_PLACEMENT_FIELD_NUMBER

ערך קבוע: 8

גמר סטטי ציבורי ב- OPERATION_TIMEOUT_IN_MS_FIELD_NUMBER

ערך קבוע: 11

אינט סופי סטטי ציבורי PLACEMENT_PERIOD_FIELD_NUMBER

ערך קבוע: 3

אינט סופי סטטי ציבורי RPC_OPTIONS_FIELD_NUMBER

ערך קבוע: 13

סיום סטטי ציבורי SESSION_INTER_OP_THREAD_POOL_FIELD_NUMBER

ערך קבוע: 12

אינט סופי סטטי ציבורי SHARE_CLUSTER_DEVICES_IN_SESSION_FIELD_NUMBER

ערך קבוע: 17

גמר סטטי ציבורי ב- USE_PER_SESSION_THREADS_FIELD_NUMBER

ערך קבוע: 9

שיטות ציבוריות

Public Boolean containsDeviceCount (מפתח מחרוזת)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

שווה ערך בוליאני ציבורי (Object obj)

getAllowSoftPlacement בוליאני ציבורי ()

 Whether soft placement is allowed. If allow_soft_placement is true,
 an op will be placed on CPU if
   1. there's no GPU implementation for the OP
 or
   2. no GPU devices are known or registered
 or
   3. need to co-locate with reftype input(s) which are from CPU.
 
bool allow_soft_placement = 7;

public ClusterDef getClusterDef ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

public ClusterDefOrBuilder getClusterDefOrBuilder ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

public static ConfigProto getDefaultInstance ()

public ConfigProto getDefaultInstanceForType ()

public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()

מפה ציבורית<String, Integer> getDeviceCount ()

השתמש ב- getDeviceCountMap() במקום זאת.

public int getDeviceCountCount ()

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

מפה ציבורית<String, Integer> getDeviceCountMap ()

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

public int getDeviceCountOrDefault (מפתח מחרוזת, int defaultValue)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

public int getDeviceCountOrThrow (מפתח מחרוזת)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

מחרוזת ציבורית getDeviceFilters (int index)

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

public com.google.protobuf.ByteString getDeviceFiltersBytes (int index)

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

public int getDeviceFiltersCount ()

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

public com.google.protobuf.ProtocolStringList getDeviceFiltersList ()

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

public ConfigProto.Experimental getExperimental ()

.tensorflow.ConfigProto.Experimental experimental = 16;

public ConfigProto.ExperimentalOrBuilder getExperimentalOrBuilder ()

.tensorflow.ConfigProto.Experimental experimental = 16;

GPUOptions ציבורי getGpuOptions ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

Public GPUOptionsOrBuilder getGpuOptionsOrBuilder ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

public GraphOptions getGraphOptions ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

public GraphOptionsOrBuilder getGraphOptionsOrBuilder ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

public int getInterOpParallelismThreads ()

 Nodes that perform blocking operations are enqueued on a pool of
 inter_op_parallelism_threads available in each process.
 0 means the system picks an appropriate number.
 Negative means all operations are performed in caller's thread.
 Note that the first Session created in the process sets the
 number of threads for all future sessions unless use_per_session_threads is
 true or session_inter_op_thread_pool is configured.
 
int32 inter_op_parallelism_threads = 5;

public int getIntraOpParallelismThreads ()

 The execution of an individual op (for some op types) can be
 parallelized on a pool of intra_op_parallelism_threads.
 0 means the system picks an appropriate number.
 If you create an ordinary session, e.g., from Python or C++,
 then there is exactly one intra op thread pool per process.
 The first session created determines the number of threads in this pool.
 All subsequent sessions reuse/share this one global pool.
 There are notable exceptions to the default behavior describe above:
 1. There is an environment variable  for overriding this thread pool,
    named TF_OVERRIDE_GLOBAL_THREADPOOL.
 2. When connecting to a server, such as a remote `tf.train.Server`
    instance, then this option will be ignored altogether.
 
int32 intra_op_parallelism_threads = 2;

getIsolateSessionState בוליאני ציבורי ()

 If true, any resources such as Variables used in the session will not be
 shared with other sessions. However, when clusterspec propagation is
 enabled, this field is ignored and sessions are always isolated.
 
bool isolate_session_state = 15;

getLogDevicePlacement בוליאני ציבורי ()

 Whether device placements should be logged.
 
bool log_device_placement = 8;

public long getOperationTimeoutInMs ()

 Global timeout for all blocking operations in this session.  If non-zero,
 and not overridden on a per-operation basis, this value will be used as the
 deadline for all blocking operations.
 
int64 operation_timeout_in_ms = 11;

פּוּמְבֵּי getParserForType ()

public int getPlacementPeriod ()

 Assignment of Nodes to Devices is recomputed every placement_period
 steps until the system warms up (at which point the recomputation
 typically slows down automatically).
 
int32 placement_period = 3;

RPCOptions ציבוריים getRpcOptions ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

public RPCOptionsOrBuilder getRpcOptionsOrBuilder ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

public int getSerializedSize ()

public ThreadPoolOptionProto getSessionInterOpThreadPool (int index)

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

public int getSessionInterOpThreadPoolCount ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

רשימה ציבורית< ThreadPoolOptionProto > getSessionInterOpThreadPoolList ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

public ThreadPoolOptionProtoOrBuilder getSessionInterOpThreadPoolOrBuilder (int index)

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

רשימה ציבורית<? מרחיב את ThreadPoolOptionProtoOrBuilder > getSessionInterOpThreadPoolOrBuilderList ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

getShareClusterDevicesInSession ציבורי בוליאני ()

 When true, WorkerSessions are created with device attributes from the
 full cluster.
 This is helpful when a worker wants to partition a graph
 (for example during a PartitionedCallOp).
 
bool share_cluster_devices_in_session = 17;

public final com.google.protobuf.UnknownFieldSet getUnknownFields ()

getUsePerSessionThreads בוליאני ציבורי ()

 If true, use a new set of threads for this session rather than the global
 pool of threads. Only supported by direct sessions.
 If false, use the global threads created by the first session, or the
 per-session thread pools configured by session_inter_op_thread_pool.
 This option is deprecated. The same effect can be achieved by setting
 session_inter_op_thread_pool to have one element, whose num_threads equals
 inter_op_parallelism_threads.
 
bool use_per_session_threads = 9;

בוליאני ציבורי hasClusterDef ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

public Boolean hasExperimental ()

.tensorflow.ConfigProto.Experimental experimental = 16;

hasGpuOptions בוליאני ציבורי ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

יש GraphOptions בוליאני ציבורי ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

hasRpcOptions בוליאני ציבורי ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

public int hashCode ()

בוליאני הסופי הציבורי הוא אתחול ()

public static ConfigProto.Builder newBuilder ()

ציבורי סטטי ConfigProto.Builder newBuilder (אב טיפוס ConfigProto )

public ConfigProto.Builder newBuilderForType ()

public static ConfigProto parseDelimitedFrom (קלט InputStream)

זורק
IOException

public static ConfigProto parseDelimitedFrom (קלט InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

זורק
IOException

ParseFrom של ConfigProto סטטי ציבורי (נתוני ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

זורק
InvalidProtocolBufferException

ConfigProto parseFrom סטטי ציבורי (קלט com.google.protobuf.CodedInputStream)

זורק
IOException

public static ConfigProto parseFrom (נתוני byte[], com.google.protobuf.ExtensionRegistryLite extensionRegistry)

זורק
InvalidProtocolBufferException

ParseFrom של ConfigProto סטטי ציבורי (נתוני ByteBuffer)

זורק
InvalidProtocolBufferException

ConfigProto parseFrom סטטי ציבורי (com.google.protobuf.CodedInputStream קלט, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

זורק
IOException

ConfigProto parseFrom סטטי ציבורי (נתוני com.google.protobuf.ByteString)

זורק
InvalidProtocolBufferException

public static ConfigProto parseFrom (קלט InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

זורק
IOException

ConfigProto parseFrom סטטי ציבורי (נתוני com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

זורק
InvalidProtocolBufferException

סטטי ציבורי מנתח ()

public ConfigProto.Builder toBuilder ()

public void writeTo (פלט com.google.protobuf.CodedOutputStream)

זורק
IOException