ConfigProto kelas akhir publik
Session configuration parameters. The system picks appropriate values for fields that are not set.Tipe protobuf
tensorflow.ConfigProto
Kelas Bersarang
kelas | ConfigProto.Builder | Session configuration parameters. | |
kelas | ConfigProto.Eksperimental | Everything inside Experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. | |
antarmuka | ConfigProto.ExperimentalOrBuilder |
Konstanta
ke dalam | ALLOW_SOFT_PLACEMENT_FIELD_NUMBER | |
ke dalam | CLUSTER_DEF_FIELD_NUMBER | |
ke dalam | DEVICE_COUNT_FIELD_NUMBER | |
ke dalam | DEVICE_FILTERS_FIELD_NUMBER | |
ke dalam | EXPERIMENTAL_FIELD_NUMBER | |
ke dalam | GPU_OPTIONS_FIELD_NUMBER | |
ke dalam | GRAPH_OPTIONS_FIELD_NUMBER | |
ke dalam | INTER_OP_PARALLELISM_THREADS_FIELD_NUMBER | |
ke dalam | INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER | |
ke dalam | ISOLATE_SESSION_STATE_FIELD_NUMBER | |
ke dalam | LOG_DEVICE_PLACEMENT_FIELD_NUMBER | |
ke dalam | OPERATION_TIMEOUT_IN_MS_FIELD_NUMBER | |
ke dalam | PLACEMENT_PERIOD_FIELD_NUMBER | |
ke dalam | RPC_OPTIONS_FIELD_NUMBER | |
ke dalam | SESSION_INTER_OP_THREAD_POOL_FIELD_NUMBER | |
ke dalam | SHARE_CLUSTER_DEVICES_IN_SESSION_FIELD_NUMBER | |
ke dalam | USE_PER_SESSION_THREADS_FIELD_NUMBER |
Metode Publik
boolean | berisiDeviceCount (kunci string) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
boolean | sama dengan (Objek objek) |
boolean | dapatkanAllowSoftPlacement () Whether soft placement is allowed. |
ClusterDef | dapatkanClusterDef () Optional list of all workers to use in this session. |
ClusterDefOrBuilder | dapatkanClusterDefOrBuilder () Optional list of all workers to use in this session. |
ConfigProto statis | |
KonfigurasiProto | |
com.google.protobuf.Descriptors.Descriptor statis terakhir | |
Peta<String, Integer> | dapatkan Jumlah Perangkat () Gunakan getDeviceCountMap() sebagai gantinya. |
ke dalam | dapatkanDeviceCountCount () Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
Peta<String, Integer> | dapatkanDeviceCountMap () Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
ke dalam | getDeviceCountOrDefault (kunci string, int defaultValue) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
ke dalam | getDeviceCountOrThrow (kunci string) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
Rangkaian | getDeviceFilters (indeks int) When any filters are present sessions will ignore all devices which do not match the filters. |
com.google.protobuf.ByteString | getDeviceFiltersBytes (indeks int) When any filters are present sessions will ignore all devices which do not match the filters. |
ke dalam | dapatkanDeviceFiltersCount () When any filters are present sessions will ignore all devices which do not match the filters. |
com.google.protobuf.ProtocolStringList | dapatkanDaftarFilterPerangkat () When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Eksperimental | dapatkan Eksperimental () .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.ExperimentalOrBuilder | dapatkanExperimentalOrBuilder () .tensorflow.ConfigProto.Experimental experimental = 16; |
Opsi GPU | dapatkanGpuOptions () Options that apply to all GPUs. |
GPUOptionsOrBuilder | dapatkanGpuOptionsOrBuilder () Options that apply to all GPUs. |
Opsi Grafik | dapatkanGraphOptions () Options that apply to all graphs. |
GraphOptionsOrBuilder | dapatkanGraphOptionsOrBuilder () Options that apply to all graphs. |
ke dalam | dapatkanInterOpParallelismThreads () Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. |
ke dalam | dapatkanIntraOpParallelismThreads () The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. |
boolean | dapatkanIsolateSessionState () If true, any resources such as Variables used in the session will not be shared with other sessions. |
boolean | dapatkanLogDevicePlacement () Whether device placements should be logged. |
panjang | dapatkanOperationTimeoutInMs () Global timeout for all blocking operations in this session. |
ke dalam | dapatkanPeriode Penempatan () Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically). |
Opsi RPCO | dapatkanRpcOptions () Options that apply when this session uses the distributed runtime. |
RPCOptionsOrBuilder | dapatkanRpcOptionsOrBuilder () Options that apply when this session uses the distributed runtime. |
ke dalam | |
ThreadPoolOptionProto | getSessionInterOpThreadPool (indeks int) This option is experimental - it may be replaced with a different mechanism in the future. |
ke dalam | getSessionInterOpThreadPoolCount () This option is experimental - it may be replaced with a different mechanism in the future. |
Daftar< ThreadPoolOptionProto > | dapatkanSessionInterOpThreadPoolList () This option is experimental - it may be replaced with a different mechanism in the future. |
ThreadPoolOptionProtoOrBuilder | getSessionInterOpThreadPoolOrBuilder (indeks int) This option is experimental - it may be replaced with a different mechanism in the future. |
Daftar<? memperluas ThreadPoolOptionProtoOrBuilder > | getSessionInterOpThreadPoolOrBuilderList () This option is experimental - it may be replaced with a different mechanism in the future. |
boolean | dapatkanShareClusterDevicesInSession () When true, WorkerSessions are created with device attributes from the full cluster. |
final com.google.protobuf.UnknownFieldSet | |
boolean | dapatkanUsePerSessionThreads () If true, use a new set of threads for this session rather than the global pool of threads. |
boolean | hasClusterDef () Optional list of all workers to use in this session. |
boolean | memiliki Eksperimental () .tensorflow.ConfigProto.Experimental experimental = 16; |
boolean | memilikiGpuOptions () Options that apply to all GPUs. |
boolean | hasGraphOptions () Options that apply to all graphs. |
boolean | memilikiRpcOptions () Options that apply when this session uses the distributed runtime. |
ke dalam | Kode hash () |
boolean terakhir | |
ConfigProto.Builder statis | |
ConfigProto.Builder statis | newBuilder (prototipe ConfigProto ) |
ConfigProto.Builder | |
ConfigProto statis | parseDelimitedFrom (masukan Aliran Masukan) |
ConfigProto statis | parseDelimitedFrom (masukan InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ConfigProto statis | parseFrom (data ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ConfigProto statis | parseFrom (com.google.protobuf.CodedInputStream masukan) |
ConfigProto statis | parseFrom (byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ConfigProto statis | parseFrom (data ByteBuffer) |
ConfigProto statis | parseFrom (com.google.protobuf.CodedInputStream masukan, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ConfigProto statis | parseFrom (com.google.protobuf.ByteString data) |
ConfigProto statis | parseFrom (masukan InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ConfigProto statis | parseFrom (com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
statis | pengurai () |
ConfigProto.Builder | |
ruang kosong | writeTo (com.google.protobuf.CodedOutputStream keluaran) |
Metode Warisan
Konstanta
int final statis publik ALLOW_SOFT_PLACEMENT_FIELD_NUMBER
Nilai Konstan: 7
int akhir statis publik CLUSTER_DEF_FIELD_NUMBER
Nilai Konstan: 14
int final statis publik DEVICE_COUNT_FIELD_NUMBER
Nilai Konstan: 1
int akhir statis publik DEVICE_FILTERS_FIELD_NUMBER
Nilai Konstan: 4
int akhir statis publik EXPERIMENTAL_FIELD_NUMBER
Nilai Konstan: 16
int final statis publik GPU_OPTIONS_FIELD_NUMBER
Nilai Konstan: 6
int akhir statis publik GRAPH_OPTIONS_FIELD_NUMBER
Nilai Konstan: 10
int akhir statis publik INTER_OP_PARALLELISM_THREADS_FIELD_NUMBER
Nilai Konstan: 5
int final statis publik INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER
Nilai Konstan: 2
int akhir statis publik ISOLATE_SESSION_STATE_FIELD_NUMBER
Nilai Konstan: 15
int akhir statis publik LOG_DEVICE_PLACEMENT_FIELD_NUMBER
Nilai Konstan: 8
int final statis publik OPERATION_TIMEOUT_IN_MS_FIELD_NUMBER
Nilai Konstan: 11
int final statis publik PLACEMENT_PERIOD_FIELD_NUMBER
Nilai Konstan: 3
int akhir statis publik RPC_OPTIONS_FIELD_NUMBER
Nilai Konstan: 13
int akhir statis publik SESSION_INTER_OP_THREAD_POOL_FIELD_NUMBER
Nilai Konstan: 12
int final statis publik SHARE_CLUSTER_DEVICES_IN_SESSION_FIELD_NUMBER
Nilai Konstan: 17
int final statis publik USE_PER_SESSION_THREADS_FIELD_NUMBER
Nilai Konstan: 9
Metode Publik
boolean publik berisiDeviceCount (kunci string)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
boolean publik sama (Obj objek)
getAllowSoftPlacement boolean publik ()
Whether soft placement is allowed. If allow_soft_placement is true, an op will be placed on CPU if 1. there's no GPU implementation for the OP or 2. no GPU devices are known or registered or 3. need to co-locate with reftype input(s) which are from CPU.
bool allow_soft_placement = 7;
ClusterDef publik getClusterDef ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
ClusterDefOrBuilder publik getClusterDefOrBuilder ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
int publik getDeviceCountCount ()
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
Peta publik<String, Integer> getDeviceCountMap ()
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public int getDeviceCountOrDefault (kunci string, int defaultValue)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public int getDeviceCountOrThrow (kunci string)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
GetDeviceFilters String publik (indeks int)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
publik com.google.protobuf.ByteString getDeviceFiltersBytes (indeks int)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
int publik getDeviceFiltersCount ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
publik com.google.protobuf.ProtocolStringList getDeviceFiltersList ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
ConfigProto publik.Eksperimental getEksperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
ConfigProto.ExperimentalOrBuilder publik getExperimentalOrBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
Opsi GPU publik getGpuOptions ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
GPUOptionsOrBuilder publik getGpuOptionsOrBuilder ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
GraphOptions publik getGraphOptions ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
publik GraphOptionsOrBuilder getGraphOptionsOrBuilder ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
publik int getInterOpParallelismThreads ()
Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. 0 means the system picks an appropriate number. Negative means all operations are performed in caller's thread. Note that the first Session created in the process sets the number of threads for all future sessions unless use_per_session_threads is true or session_inter_op_thread_pool is configured.
int32 inter_op_parallelism_threads = 5;
publik int getIntraOpParallelismThreads ()
The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. 0 means the system picks an appropriate number. If you create an ordinary session, e.g., from Python or C++, then there is exactly one intra op thread pool per process. The first session created determines the number of threads in this pool. All subsequent sessions reuse/share this one global pool. There are notable exceptions to the default behavior describe above: 1. There is an environment variable for overriding this thread pool, named TF_OVERRIDE_GLOBAL_THREADPOOL. 2. When connecting to a server, such as a remote `tf.train.Server` instance, then this option will be ignored altogether.
int32 intra_op_parallelism_threads = 2;
boolean publik getIsolateSessionState ()
If true, any resources such as Variables used in the session will not be shared with other sessions. However, when clusterspec propagation is enabled, this field is ignored and sessions are always isolated.
bool isolate_session_state = 15;
getLogDevicePlacement boolean publik ()
Whether device placements should be logged.
bool log_device_placement = 8;
getOperationTimeoutInMs publik yang panjang ()
Global timeout for all blocking operations in this session. If non-zero, and not overridden on a per-operation basis, this value will be used as the deadline for all blocking operations.
int64 operation_timeout_in_ms = 11;
publik dapatkanParserForType ()
int publik getPlacementPeriod ()
Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically).
int32 placement_period = 3;
RPCOptions publik getRpcOptions ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
RPCOptionsOrBuilder publik getRpcOptionsOrBuilder ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
publik int getSerializedSize ()
ThreadPoolOptionProto publik getSessionInterOpThreadPool (int indeks)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
int publik getSessionInterOpThreadPoolCount ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
Daftar publik< ThreadPoolOptionProto > getSessionInterOpThreadPoolList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
publik ThreadPoolOptionProtoOrBuilder getSessionInterOpThreadPoolOrBuilder (int indeks)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
Daftar Publik<? memperluas ThreadPoolOptionProtoOrBuilder > getSessionInterOpThreadPoolOrBuilderList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
boolean publik getShareClusterDevicesInSession ()
When true, WorkerSessions are created with device attributes from the full cluster. This is helpful when a worker wants to partition a graph (for example during a PartitionedCallOp).
bool share_cluster_devices_in_session = 17;
public final com.google.protobuf.UnknownFieldSet getUnknownFields ()
boolean publik getUsePerSessionThreads ()
If true, use a new set of threads for this session rather than the global pool of threads. Only supported by direct sessions. If false, use the global threads created by the first session, or the per-session thread pools configured by session_inter_op_thread_pool. This option is deprecated. The same effect can be achieved by setting session_inter_op_thread_pool to have one element, whose num_threads equals inter_op_parallelism_threads.
bool use_per_session_threads = 9;
boolean publik hasClusterDef ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
boolean publik hasEksperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
boolean publik hasGpuOptions ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
boolean publik hasGraphOptions ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
boolean publik hasRpcOptions ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
kode hash int publik ()
boolean akhir publik diinisialisasi ()
ConfigProto statis publik parseDelimitedFrom (input InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
Pengecualian IO |
---|
parseFrom ConfigProto statis publik (data ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
ProtokolBufferException Tidak Valid |
---|
parseFrom ConfigProto statis publik (com.google.protobuf.CodedInputStream masukan)
Melempar
Pengecualian IO |
---|
ConfigProto statis publik parseFrom (byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
ProtokolBufferException Tidak Valid |
---|
ConfigProto statis publik parseFrom (com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
Pengecualian IO |
---|
parseFrom ConfigProto statis publik (com.google.protobuf.ByteString data)
Melempar
ProtokolBufferException Tidak Valid |
---|
parseFrom ConfigProto statis publik (input InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
Pengecualian IO |
---|
ConfigProto statis publik parseFrom (com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
ProtokolBufferException Tidak Valid |
---|
statis publik pengurai ()
public void writeTo (com.google.protobuf.CodedOutputStream keluaran)
Melempar
Pengecualian IO |
---|