tensorflow::ops::SparseApplyAdagradDA
#include <training_ops.h>
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
Summary
Arguments:
- scope: A Scope object
- var: Should be from a Variable().
- gradient_accumulator: Should be from a Variable().
- gradient_squared_accumulator: Should be from a Variable().
- grad: The gradient.
- indices: A vector of indices into the first dimension of var and accum.
- lr: Learning rate. Must be a scalar.
- l1: L1 regularization. Must be a scalar.
- l2: L2 regularization. Must be a scalar.
- global_step: Training step number. Must be a scalar.
Optional attributes (see Attrs
):
- use_locking: If True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
Output
: Same as "var".
Constructors and Destructors |
|
---|---|
SparseApplyAdagradDA(const ::
|
|
SparseApplyAdagradDA(const ::
|
Public functions |
|
---|---|
node() const
|
::tensorflow::Node *
|
operator::tensorflow::Input() const
|
|
operator::tensorflow::Output() const
|
|
Public static functions |
|
---|---|
UseLocking(bool x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for SparseApplyAdagradDA. |
Public attributes
operation
Operation operation
out
::tensorflow::Output out
Public functions
SparseApplyAdagradDA
SparseApplyAdagradDA( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input gradient_accumulator, ::tensorflow::Input gradient_squared_accumulator, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input global_step )
SparseApplyAdagradDA
SparseApplyAdagradDA( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input gradient_accumulator, ::tensorflow::Input gradient_squared_accumulator, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input global_step, const SparseApplyAdagradDA::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const