tensorflow::ops::SparseTensorDenseMatMul
#include <sparse_ops.h>
Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
Summary
No validity checking is performed on the indices of A. However, the following input format is recommended for optimal behavior:
if adjoint_a == false: A should be sorted in lexicographically increasing order. Use SparseReorder if you're not sure. if adjoint_a == true: A should be sorted in order of increasing dimension 1 (i.e., "column major" order instead of "row major" order).
Arguments:
- scope: A Scope object
- a_indices: 2-D. The
indices
of theSparseTensor
, size[nnz, 2]
Matrix. - a_values: 1-D. The
values
of theSparseTensor
, size[nnz]
Vector. - a_shape: 1-D. The
shape
of theSparseTensor
, size[2]
Vector. - b: 2-D. A dense Matrix.
Optional attributes (see Attrs
):
- adjoint_a: Use the adjoint of A in the matrix multiply. If A is complex, this is transpose(conj(A)). Otherwise it's transpose(A).
- adjoint_b: Use the adjoint of B in the matrix multiply. If B is complex, this is transpose(conj(B)). Otherwise it's transpose(B).
Returns:
Output
: The product tensor.
Constructors and Destructors |
|
---|---|
SparseTensorDenseMatMul(const ::
|
|
SparseTensorDenseMatMul(const ::
|
Public functions |
|
---|---|
node() const
|
::tensorflow::Node *
|
operator::tensorflow::Input() const
|
|
operator::tensorflow::Output() const
|
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for SparseTensorDenseMatMul. |
Public attributes
operation
Operation operation
product
::tensorflow::Output product
Public functions
SparseTensorDenseMatMul
SparseTensorDenseMatMul( const ::tensorflow::Scope & scope, ::tensorflow::Input a_indices, ::tensorflow::Input a_values, ::tensorflow::Input a_shape, ::tensorflow::Input b )
SparseTensorDenseMatMul
SparseTensorDenseMatMul( const ::tensorflow::Scope & scope, ::tensorflow::Input a_indices, ::tensorflow::Input a_values, ::tensorflow::Input a_shape, ::tensorflow::Input b, const SparseTensorDenseMatMul::Attrs & attrs )