Gradient descent (with momentum) optimizer.
View aliases
Main aliases
Compat aliases for migrationSee Migration guide for more details.
`tf.compat.v1.keras.optimizers.legacy.SGD`
tf.keras.optimizers.legacy.SGD(
learning_rate=0.01,
momentum=0.0,
nesterov=False,
name='SGD',
**kwargs
)
Update rule for parameter w
with gradient g
when momentum
is 0:
w = w - learning_rate * g
Update rule when momentum
is larger than 0:
velocity = momentum * velocity - learning_rate * g
w = w + velocity
When nesterov=True
, this rule becomes:
velocity = momentum * velocity - learning_rate * g
w = w + momentum * velocity - learning_rate * g
Args | |
---|---|
learning_
|
A Tensor , floating point value, or a schedule that is a
tf.keras.optimizers.schedules.LearningRateSchedule , or a callable
that takes no arguments and returns the actual value to use. The
learning rate. Defaults to 0.01.
|
momentum
|
float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations. Defaults to 0, i.e., vanilla gradient descent. |
nesterov
|
boolean. Whether to apply Nesterov momentum.
Defaults to False .
|
name
|
Optional name prefix for the operations created when applying
gradients. Defaults to "SGD" .
|
**kwargs
|
keyword arguments. Allowed arguments are clipvalue ,
clipnorm , global_clipnorm .
If clipvalue (float) is set, the gradient of each weight
is clipped to be no higher than this value.
If clipnorm (float) is set, the gradient of each weight
is individually clipped so that its norm is no higher than this value.
If global_clipnorm (float) is set the gradient of all weights is
clipped so that their global norm is no higher than this value.
|
Usage:
opt = tf.keras.optimizers.SGD(learning_rate=0.1)
var = tf.Variable(1.0)
loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1
step_count = opt.minimize(loss, [var]).numpy()
# Step is `- learning_rate * grad`
var.numpy()
0.9
opt = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
var = tf.Variable(1.0)
val0 = var.value()
loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1
# First step is `- learning_rate * grad`
step_count = opt.minimize(loss, [var]).numpy()
val1 = var.value()
(val0 - val1).numpy()
0.1
# On later steps, step-size increases because of momentum
step_count = opt.minimize(loss, [var]).numpy()
val2 = var.value()
(val1 - val2).numpy()
0.18
Reference | |
---|---|
|