tf.keras.optimizers.legacy.SGD

Gradient descent (with momentum) optimizer.

Inherits From: SGD, Optimizer

Main aliases

tf.optimizers.legacy.SGD

Compat aliases for migration

See Migration guide for more details.

`tf.compat.v1.keras.optimizers.legacy.SGD`

Update rule for parameter w with gradient g when momentum is 0:

w = w - learning_rate * g

Update rule when momentum is larger than 0:

velocity = momentum * velocity - learning_rate * g
w = w + velocity

When nesterov=True, this rule becomes:

velocity = momentum * velocity - learning_rate * g
w = w + momentum * velocity - learning_rate * g

learning_rate A Tensor, floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to 0.01.
momentum float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations. Defaults to 0, i.e., vanilla gradient descent.
nesterov boolean. Whether to apply Nesterov momentum. Defaults to False.
name Optional name prefix for the operations created when applying gradients. Defaults to "SGD".
**kwargs keyword arguments. Allowed arguments are clipvalue, clipnorm, global_clipnorm. If clipvalue (float) is set, the gradient of each weight is clipped to be no higher than this value. If clipnorm (float) is set, the gradient of each weight is individually clipped so that its norm is no higher than this value. If global_clipnorm (float) is set the gradient of all weights is clipped so that their global norm is no higher than this value.

Usage:

opt = tf.keras.optimizers.SGD(learning_rate=0.1)
var = tf.Variable(1.0)
loss = lambda: (var ** 2)/2.0         # d(loss)/d(var1) = var1
step_count = opt.minimize(loss, [var]).numpy()
# Step is `- learning_rate * grad`
var.numpy()
0.9
opt = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
var = tf.Variable(1.0)
val0 = var.value()
loss = lambda: (var ** 2)/2.0         # d(loss)/d(var1) = var1
# First step is `- learning_rate * grad`
step_count = opt.minimize(loss, [var]).numpy()
val1 = var.value()
(val0 - val1).numpy()
0.1
# On later steps, step-size increases because of momentum
step_count = opt.minimize(loss, [var]).numpy()
val2 = var.value()
(val1 - val2).numpy()
0.18

ValueError in case of any invalid argument.