Computes the tf.math.minimum
of elements across dimensions of a tensor. (deprecated arguments)
tf.compat.v1.reduce_min(
input_tensor,
axis=None,
keepdims=None,
name=None,
reduction_indices=None,
keep_dims=None
)
Deprecated: SOME ARGUMENTS ARE DEPRECATED: (keep_dims)
. They will be removed in a future version.
Instructions for updating:
keep_dims is deprecated, use keepdims instead
This is the reduction operation for the elementwise tf.math.minimum
op.
Reduces input_tensor
along the dimensions given in axis
.
Unless keepdims
is true, the rank of the tensor is reduced by 1 for each
of the entries in axis
, which must be unique. If keepdims
is true, the
reduced dimensions are retained with length 1.
If axis
is None, all dimensions are reduced, and a
tensor with a single element is returned.
Usage example
>>> x = tf.constant([5, 1, 2, 4])
>>> tf.reduce_min(x)
<tf.Tensor: shape=(), dtype=int32, numpy=1>
>>> x = tf.constant([-5, -1, -2, -4])
>>> tf.reduce_min(x)
<tf.Tensor: shape=(), dtype=int32, numpy=-5>
>>> x = tf.constant([4, float('nan')])
>>> tf.reduce_min(x)
<tf.Tensor: shape=(), dtype=float32, numpy=nan>
>>> x = tf.constant([float('nan'), float('nan')])
>>> tf.reduce_min(x)
<tf.Tensor: shape=(), dtype=float32, numpy=nan>
>>> x = tf.constant([float('-inf'), float('inf')])
>>> tf.reduce_min(x)
<tf.Tensor: shape=(), dtype=float32, numpy=-inf>
See the numpy docs for np.amin
and np.nanmin
behavior.
Args
input_tensor
The tensor to reduce. Should have real numeric type.
axis
The dimensions to reduce. If None
(the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor))
.
keepdims
If true, retains reduced dimensions with length 1.
name
A name for the operation (optional).
reduction_indices
The old (deprecated) name for axis.
keep_dims
Deprecated alias for keepdims
.
Returns
The reduced tensor.