tensorflow::ops::ResourceSparseApplyKerasMomentum

#include <training_ops.h>

Update relevant entries in '*var' and '*accum' according to the momentum scheme.

Summary

Set use_nesterov = True if you want to use Nesterov momentum.

That is for rows we have grad for, we update var and accum as follows:

accum = accum * momentum - lr * grad var += accum

Args:

  • scope: A Scope object
  • var: Should be from a Variable().
  • accum: Should be from a Variable().
  • lr: Learning rate. Must be a scalar.
  • grad: The gradient.
  • indices: A vector of indices into the first dimension of var and accum.
  • momentum: Momentum. Must be a scalar.

Optional attributes (see Attrs):

  • use_locking: If True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • use_nesterov: If True, the tensor passed to compute grad will be var + momentum * accum, so in the end, the var you get is actually var + momentum * accum.

Returns:

Public attributes

operation

Public functions

operator::tensorflow::Operation() const

Public static functions

UseLocking(bool x)
UseNesterov(bool x)

Public attributes

operation

Operation operation

Public functions

ResourceSparseApplyKerasMomentum

 ResourceSparseApplyKerasMomentum(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input lr,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input momentum
)

ResourceSparseApplyKerasMomentum

 ResourceSparseApplyKerasMomentum(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input lr,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input momentum,
  const ResourceSparseApplyKerasMomentum::Attrs & attrs
)

operator::tensorflow::Operation

 operator::tensorflow::Operation() const 

Public static functions

UseLocking

Attrs UseLocking(
  bool x
)

UseNesterov

Attrs UseNesterov(
  bool x
)