przepływ tensorowy:: ops:: ZasóbSparseApplyFtrlV2
#include <training_ops.h>
Zaktualizuj odpowiednie wpisy w „*var” zgodnie ze schematem Ftrl-proximal.
Streszczenie
To znaczy dla wierszy, dla których mamy grad, aktualizujemy var, accum i linear w następujący sposób: grad_with_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad_with_shrinkage * grad_with_shrinkage linear += grad_with_shrinkage + (accum_new^(-lr_power) - accum^ (-lr_power)) / lr * var kwadratowy = 1,0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (znak(liniowy) * l1 - liniowy) / kwadratowy jeśli |liniowy| > l1 else 0,0 accum = accum_new
Argumenty:
- zakres: Obiekt Scope
- var: Powinien pochodzić ze zmiennej ().
- accum: Powinien pochodzić ze zmiennej ().
- liniowy: powinien pochodzić ze zmiennej ().
- grad: gradient.
- indeksy: wektor indeksów do pierwszego wymiaru var i accum.
- lr: Współczynnik skalowania. Musi być skalarem.
- l1: Regularyzacja L1. Musi być skalarem.
- l2: Regularyzacja skurczu L2. Musi być skalarem.
- lr_power: Współczynnik skalowania. Musi być skalarem.
Opcjonalne atrybuty (patrz Attrs
):
- use_locking: Jeśli
True
, aktualizacja tensorów var i accum będzie chroniona blokadą; w przeciwnym razie zachowanie jest niezdefiniowane, ale może wykazywać mniejszą rywalizację.
Zwroty:
- utworzonej
Operation
Konstruktory i destruktory | |
---|---|
ResourceSparseApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power) | |
ResourceSparseApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power, const ResourceSparseApplyFtrlV2::Attrs & attrs) |
Atrybuty publiczne | |
---|---|
operation |
Funkcje publiczne | |
---|---|
operator::tensorflow::Operation () const |
Publiczne funkcje statyczne | |
---|---|
UseLocking (bool x) |
Struktury | |
---|---|
tensorflow:: ops:: ResourceSparseApplyFtrlV2:: Attrs | Opcjonalne moduły ustawiające atrybuty dla ResourceSparseApplyFtrlV2 . |
Atrybuty publiczne
działanie
Operation operation
Funkcje publiczne
ZasóbSparseApplyFtrlV2
ResourceSparseApplyFtrlV2( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power )
ZasóbSparseApplyFtrlV2
ResourceSparseApplyFtrlV2( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power, const ResourceSparseApplyFtrlV2::Attrs & attrs )
operator::tensorflow::Operacja
operator::tensorflow::Operation() const
Publiczne funkcje statyczne
Użyj Blokowania
Attrs UseLocking( bool x )