tensor akışı:: işlem:: SparseApplyProximalAdagrad

#include <training_ops.h>

FOBOS algoritmasına göre '*var' ve '*accum' içindeki seyrek güncelleme girişleri.

Özet

Yani, derecelendirdiğimiz satırlar için var ve accum'u aşağıdaki gibi güncelleriz:

$$accum += grad * grad$$
$$prox_v = var$$
$$prox_v -= lr * grad * (1 / sqrt(accum))$$
$$var = sign(prox_v)/(1+lr*l2) * max{|prox_v|-lr*l1,0}$$

Argümanlar:

  • kapsam: Bir Kapsam nesnesi
  • var: Bir Variable()'dan olmalıdır.
  • accum: Bir Variable()'dan olmalıdır.
  • lr: Öğrenme oranı. Bir skaler olmalı.
  • l1: L1 düzenlemesi. Bir skaler olmalı.
  • l2: L2 düzenlemesi. Bir skaler olmalı.
  • grad: Gradyan.
  • indeksler: var ve accum'un ilk boyutuna ait indekslerden oluşan bir vektör.

İsteğe bağlı özellikler (bkz. Attrs ):

  • use_locking: True ise, var ve accum tensörlerinin güncellenmesi bir kilitle korunacaktır; aksi takdirde davranış tanımsızdır ancak daha az çekişme sergileyebilir.

İade:

Yapıcılar ve Yıkıcılar

SparseApplyProximalAdagrad (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input grad, :: tensorflow::Input indices)
SparseApplyProximalAdagrad (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input grad, :: tensorflow::Input indices, const SparseApplyProximalAdagrad::Attrs & attrs)

Genel özellikler

operation
out

Kamu işlevleri

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

Genel statik işlevler

UseLocking (bool x)

Yapılar

tensorflow:: ops:: SparseApplyProximalAdagrad:: Öznitelikler

SparseApplyProximalAdagrad için isteğe bağlı öznitelik ayarlayıcılar.

Genel özellikler

operasyon

Operation operation

dışarı

::tensorflow::Output out

Kamu işlevleri

SparseApplyProximalAdagrad

 SparseApplyProximalAdagrad(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices
)

SparseApplyProximalAdagrad

 SparseApplyProximalAdagrad(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  const SparseApplyProximalAdagrad::Attrs & attrs
)

düğüm

::tensorflow::Node * node() const 

operatör::tensorflow::Giriş

 operator::tensorflow::Input() const 

operatör::tensorflow::Çıktı

 operator::tensorflow::Output() const 

Genel statik işlevler

KullanımKilitleme

Attrs UseLocking(
  bool x
)