Upsampling layer for 2D inputs.
Inherits From: Layer
View aliases
Compat aliases for migration
See Migration guide for more details.
tf.keras.layers.UpSampling2D(
size=(2, 2), data_format=None, interpolation='nearest', **kwargs
)
Repeats the rows and columns of the data
by size[0]
and size[1]
respectively.
Examples:
input_shape = (2, 2, 1, 3)
x = np.arange(np.prod(input_shape)).reshape(input_shape)
print(x)
[[[[ 0 1 2]]
[[ 3 4 5]]]
[[[ 6 7 8]]
[[ 9 10 11]]]]
y = tf.keras.layers.UpSampling2D(size=(1, 2))(x)
print(y)
tf.Tensor(
[[[[ 0 1 2]
[ 0 1 2]]
[[ 3 4 5]
[ 3 4 5]]]
[[[ 6 7 8]
[ 6 7 8]]
[[ 9 10 11]
[ 9 10 11]]]], shape=(2, 2, 2, 3), dtype=int64)
Arguments | |
---|---|
size
|
Int, or tuple of 2 integers. The upsampling factors for rows and columns. |
data_
|
A string,
one of channels_ (default) or channels_ .
The ordering of the dimensions in the inputs.
channels_ corresponds to inputs with shape
(batch_ while channels_
corresponds to inputs with shape
(batch_ .
It defaults to the image_ value found in your
Keras config file at ~/ .
If you never set it, then it will be "channels_last".
|
interpolation
|
A string, one of nearest or bilinear .
|
Input shape:
4D tensor with shape:
- If
data_format
is"channels_last"
:(batch_size, rows, cols, channels)
- If
data_format
is"channels_first"
:(batch_size, channels, rows, cols)
Output shape:
4D tensor with shape:
- If
data_format
is"channels_last"
:(batch_size, upsampled_rows, upsampled_cols, channels)
- If
data_format
is"channels_first"
:(batch_size, channels, upsampled_rows, upsampled_cols)