Construct an identity matrix, or a batch of matrices.
tf.eye(
num_rows, num_columns=None, batch_shape=None, dtype=tf.dtypes.float32, name=None
)
# Construct one identity matrix.
tf.eye(2)
==> [[1., 0.],
[0., 1.]]
# Construct a batch of 3 identity matrices, each 2 x 2.
# batch_identity[i, :, :] is a 2 x 2 identity matrix, i = 0, 1, 2.
batch_identity = tf.eye(2, batch_shape=[3])
# Construct one 2 x 3 "identity" matrix
tf.eye(2, num_columns=3)
==> [[ 1., 0., 0.],
[ 0., 1., 0.]]
Args |
num_rows
|
Non-negative int32 scalar Tensor giving the number of rows
in each batch matrix.
|
num_columns
|
Optional non-negative int32 scalar Tensor giving the number
of columns in each batch matrix. Defaults to num_rows .
|
batch_shape
|
A list or tuple of Python integers or a 1-D int32 Tensor .
If provided, the returned Tensor will have leading batch dimensions of
this shape.
|
dtype
|
The type of an element in the resulting Tensor
|
name
|
A name for this Op . Defaults to "eye".
|
Returns |
A Tensor of shape batch_shape + [num_rows, num_columns]
|