tensorflow::ops::LRN
#include <nn_ops.h>
Local Response Normalization.
Summary
The 4-D input
tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius
. In detail,
sqr_sum[a, b, c, d] =
sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** beta
For details, see Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012).
Arguments:
- scope: A Scope object
- input: 4-D.
Optional attributes (see Attrs
):
- depth_radius: 0-D. Half-width of the 1-D normalization window.
- bias: An offset (usually positive to avoid dividing by 0).
- alpha: A scale factor, usually positive.
- beta: An exponent.
Returns:
Output
: The output tensor.
Constructors and Destructors |
|
---|---|
LRN(const ::tensorflow::Scope & scope, ::tensorflow::Input input)
|
|
LRN(const ::tensorflow::Scope & scope, ::tensorflow::Input input, const LRN::Attrs & attrs)
|
Public attributes |
|
---|---|
operation
|
|
output
|
Public functions |
|
---|---|
node() const
|
::tensorflow::Node *
|
operator::tensorflow::Input() const
|
|
operator::tensorflow::Output() const
|
|
Public static functions |
|
---|---|
Alpha(float x)
|
|
Beta(float x)
|
|
Bias(float x)
|
|
DepthRadius(int64 x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for LRN. |
Public attributes
operation
Operation operation
output
::tensorflow::Output output
Public functions
LRN
LRN( const ::tensorflow::Scope & scope, ::tensorflow::Input input )
LRN
LRN( const ::tensorflow::Scope & scope, ::tensorflow::Input input, const LRN::Attrs & attrs )
node
::tensorflow::Node * node() const