tf.compat.v1.nn.sigmoid_cross_entropy_with_logits

Computes sigmoid cross entropy given logits.

Measures the probability error in tasks with two outcomes in which each outcome is independent and need not have a fully certain label. For instance, one could perform a regression where the probability of an event happening is known and used as a label. This loss may also be used for binary classification, where labels are either zero or one.

For brevity, let x = logits, z = labels. The logistic loss is

  z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
= z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
= (1 - z) * x + log(1 + exp(-x))
= x - x * z + log(1 + exp(-x))

For x < 0, to avoid overflow in exp(-x), we reformulate the above

  x - x * z + log(1 + exp(-x))
= log(exp(x)) - x * z + log(1 + exp(-x))
= - x * z + log(1 + exp(x))

Hence, to ensure stability and avoid overflow, the implementation uses this equivalent formulation

max(x, 0) - x * z + log(1 + exp(-abs(x)))

logits and labels must have the same type and shape.

logits = tf.constant([1., -1., 0., 1., -1., 0., 0.])
labels = tf.constant([0., 0., 0., 1., 1., 1., 0.5])
tf.nn.sigmoid_cross_entropy_with_logits(
    labels=labels, logits=logits).numpy()
array([1.3132617, 0.3132617, 0.6931472, 0.3132617, 1.3132617, 0.6931472,
       0.6931472], dtype=float32)

Compared to the losses which handle multiple outcomes, tf.nn.softmax_cross_entropy_with_logits for general multi-class classification and tf.nn.sparse_softmax_cross_entropy_with_logits for more efficient multi-class classification with hard labels, sigmoid_cross_entropy_with_logits is a slight simplification for binary classification:

  sigmoid(x) = softmax([x, 0])[0]
$$\frac{1}{1 + e^{-x} } = \frac{e^x}{e^x + e^0}$$

While sigmoid_cross_entropy_with_logits works for soft binary labels (probabilities between 0 and 1), it can also be used for binary classification where the labels are hard. There is an equivalence between all three symbols in this case, with a probability 0 indicating the second class or 1 indicating the first class:

sigmoid_logits = tf.constant([1., -1., 0.])
softmax_logits = tf.stack([sigmoid_logits, tf.zeros_like(sigmoid_logits)],
                          axis=-1)
soft_binary_labels = tf.constant([1., 1., 0.])
soft_multiclass_labels = tf.stack(
    [soft_binary_labels, 1. - soft_binary_labels], axis=-1)
hard_labels = tf.constant([0, 0, 1])
tf.nn.sparse_softmax_cross_entropy_with_logits(
    labels=hard_labels, logits=softmax_logits).numpy()
array([0.31326166, 1.3132616 , 0.6931472 ], dtype=float32)
tf.nn.softmax_cross_entropy_with_logits(
    labels=soft_multiclass_labels, logits=softmax_logits).numpy()
array([0.31326166, 1.3132616, 0.6931472], dtype=float32)
tf.nn.sigmoid_cross_entropy_with_logits(
    labels=soft_binary_labels, logits=sigmoid_logits).numpy()
array([0.31326166, 1.3132616, 0.6931472], dtype=float32)

labels A Tensor of the same type and shape as logits. Between 0 and 1, inclusive.
logits A Tensor of type float32 or float64. Any real number.
name A name for the operation (optional).

A Tensor of the same shape as logits with the componentwise logistic losses.

ValueError If logits and labels do not have the same shape.