View source on GitHub |
A preprocessing layer which maps string features to integer indices.
Inherits From: PreprocessingLayer
, Layer
, Module
tf.keras.layers.StringLookup(
max_tokens=None,
num_oov_indices=1,
mask_token=None,
oov_token='[UNK]',
vocabulary=None,
idf_weights=None,
encoding=None,
invert=False,
output_mode='int',
sparse=False,
pad_to_max_tokens=False,
**kwargs
)
This layer translates a set of arbitrary strings into integer output via a table-based vocabulary lookup.
The vocabulary for the layer must be either supplied on construction or
learned via adapt()
. During adapt()
, the layer will analyze a data set,
determine the frequency of individual strings tokens, and create a vocabulary
from them. If the vocabulary is capped in size, the most frequent tokens will
be used to create the vocabulary and all others will be treated as
out-of-vocabulary (OOV).
There are two possible output modes for the layer.
When output_mode
is "int"
,
input strings are converted to their index in the vocabulary (an integer).
When output_mode
is "multi_hot"
, "count"
, or "tf_idf"
, input strings
are encoded into an array where each dimension corresponds to an element in
the vocabulary.
The vocabulary can optionally contain a mask token as well as an OOV token
(which can optionally occupy multiple indices in the vocabulary, as set
by num_oov_indices
).
The position of these tokens in the vocabulary is fixed. When output_mode
is
"int"
, the vocabulary will begin with the mask token (if set), followed by
OOV indices, followed by the rest of the vocabulary. When output_mode
is
"multi_hot"
, "count"
, or "tf_idf"
the vocabulary will begin with OOV
indices and instances of the mask token will be dropped.
For an overview and full list of preprocessing layers, see the preprocessing guide.
Examples:
Creating a lookup layer with a known vocabulary
This example creates a lookup layer with a pre-existing vocabulary.
vocab = ["a", "b", "c", "d"]
data = tf.constant([["a", "c", "d"], ["d", "z", "b"]])
layer = tf.keras.layers.StringLookup(vocabulary=vocab)
layer(data)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
array([[1, 3, 4],
[4, 0, 2]])>
Creating a lookup layer with an adapted vocabulary
This example creates a lookup layer and generates the vocabulary by analyzing the dataset.
data = tf.constant([["a", "c", "d"], ["d", "z", "b"]])
layer = tf.keras.layers.StringLookup()
layer.adapt(data)
layer.get_vocabulary()
['[UNK]', 'd', 'z', 'c', 'b', 'a']
Note that the OOV token "[UNK]"
has been added to the vocabulary.
The remaining tokens are sorted by frequency
("d"
, which has 2 occurrences, is first) then by inverse sort order.
data = tf.constant([["a", "c", "d"], ["d", "z", "b"]])
layer = tf.keras.layers.StringLookup()
layer.adapt(data)
layer(data)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
array([[5, 3, 1],
[1, 2, 4]])>
Lookups with multiple OOV indices
This example demonstrates how to use a lookup layer with multiple OOV indices. When a layer is created with more than one OOV index, any OOV values are hashed into the number of OOV buckets, distributing OOV values in a deterministic fashion across the set.
vocab = ["a", "b", "c", "d"]
data = tf.constant([["a", "c", "d"], ["m", "z", "b"]])
layer = tf.keras.layers.StringLookup(vocabulary=vocab, num_oov_indices=2)
layer(data)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
array([[2, 4, 5],
[0, 1, 3]])>
Note that the output for OOV value 'm' is 0, while the output for OOV value 'z' is 1. The in-vocab terms have their output index increased by 1 from earlier examples (a maps to 2, etc) in order to make space for the extra OOV value.
One-hot output
Configure the layer with output_mode='one_hot'
. Note that the first
num_oov_indices
dimensions in the ont_hot encoding represent OOV values.
vocab = ["a", "b", "c", "d"]
data = tf.constant(["a", "b", "c", "d", "z"])
layer = tf.keras.layers.StringLookup(
vocabulary=vocab, output_mode='one_hot')
layer(data)
<tf.Tensor: shape=(5, 5), dtype=float32, numpy=
array([[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0.]], dtype=float32)>
Multi-hot output
Configure the layer with output_mode='multi_hot'
. Note that the first
num_oov_indices
dimensions in the multi_hot encoding represent OOV values.
vocab = ["a", "b", "c", "d"]
data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]])
layer = tf.keras.layers.StringLookup(
vocabulary=vocab, output_mode='multi_hot')
layer(data)
<tf.Tensor: shape=(2, 5), dtype=float32, numpy=
array([[0., 1., 0., 1., 1.],
[1., 0., 1., 0., 1.]], dtype=float32)>
Token count output
Configure the layer with output_mode='count'
. As with multi_hot output, the
first num_oov_indices
dimensions in the output represent OOV values.
vocab = ["a", "b", "c", "d"]
data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]])
layer = tf.keras.layers.StringLookup(
vocabulary=vocab, output_mode='count')
layer(data)
<tf.Tensor: shape=(2, 5), dtype=float32, numpy=
array([[0., 1., 0., 1., 2.],
[2., 0., 1., 0., 1.]], dtype=float32)>
TF-IDF output
Configure the layer with output_mode="tf_idf"
. As with multi_hot output, the
first num_oov_indices
dimensions in the output represent OOV values.
Each token bin will output token_count * idf_weight
, where the idf weights
are the inverse document frequency weights per token. These should be provided
along with the vocabulary. Note that the idf_weight
for OOV values will
default to the average of all idf weights passed in.
vocab = ["a", "b", "c", "d"]
idf_weights = [0.25, 0.75, 0.6, 0.4]
data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]])
layer = tf.keras.layers.StringLookup(output_mode="tf_idf")
layer.set_vocabulary(vocab, idf_weights=idf_weights)
layer(data)
<tf.Tensor: shape=(2, 5), dtype=float32, numpy=
array([[0. , 0.25, 0. , 0.6 , 0.8 ],
[1.0 , 0. , 0.75, 0. , 0.4 ]], dtype=float32)>
To specify the idf weights for oov values, you will need to pass the entire vocabularly including the leading oov token.
vocab = ["[UNK]", "a", "b", "c", "d"]
idf_weights = [0.9, 0.25, 0.75, 0.6, 0.4]
data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]])
layer = tf.keras.layers.StringLookup(output_mode="tf_idf")
layer.set_vocabulary(vocab, idf_weights=idf_weights)
layer(data)
<tf.Tensor: shape=(2, 5), dtype=float32, numpy=
array([[0. , 0.25, 0. , 0.6 , 0.8 ],
[1.8 , 0. , 0.75, 0. , 0.4 ]], dtype=float32)>
When adapting the layer in "tf_idf"
mode, each input sample will be
considered a document, and IDF weight per token will be calculated as
log(1 + num_documents / (1 + token_document_count))
.
Inverse lookup
This example demonstrates how to map indices to strings using this layer. (You
can also use adapt()
with inverse=True
, but for simplicity we'll pass the
vocab in this example.)
vocab = ["a", "b", "c", "d"]
data = tf.constant([[1, 3, 4], [4, 0, 2]])
layer = tf.keras.layers.StringLookup(vocabulary=vocab, invert=True)
layer(data)
<tf.Tensor: shape=(2, 3), dtype=string, numpy=
array([[b'a', b'c', b'd'],
[b'd', b'[UNK]', b'b']], dtype=object)>
Note that the first index correspond to the oov token by default.
Forward and inverse lookup pairs
This example demonstrates how to use the vocabulary of a standard lookup layer to create an inverse lookup layer.
vocab = ["a", "b", "c", "d"]
data = tf.constant([["a", "c", "d"], ["d", "z", "b"]])
layer = tf.keras.layers.StringLookup(vocabulary=vocab)
i_layer = tf.keras.layers.StringLookup(vocabulary=vocab, invert=True)
int_data = layer(data)
i_layer(int_data)
<tf.Tensor: shape=(2, 3), dtype=string, numpy=
array([[b'a', b'c', b'd'],
[b'd', b'[UNK]', b'b']], dtype=object)>
In this example, the input value "z"
resulted in an output of "[UNK]"
,
since 1000 was not in the vocabulary - it got represented as an OOV, and all
OOV values are returned as "[UNK]"
in the inverse layer. Also, note that
for the inverse to work, you must have already set the forward layer
vocabulary either directly or via adapt()
before calling get_vocabulary()
.
Attributes | |
---|---|
is_adapted
|
Whether the layer has been fit to data already. |
Methods
adapt
adapt(
data, batch_size=None, steps=None
)
Fits the state of the preprocessing layer to the data being passed.
After calling adapt
on a layer, a preprocessing layer's state will not
update during training. In order to make preprocessing layers efficient in
any distribution context, they are kept constant with respect to any
compiled tf.Graph
s that call the layer. This does not affect the layer use
when adapting each layer only once, but if you adapt a layer multiple times
you will need to take care to re-compile any compiled functions as follows:
- If you are adding a preprocessing layer to a
keras.Model
, you need to callmodel.compile
after each subsequent call toadapt
. - If you are calling a preprocessing layer inside
tf.data.Dataset.map
, you should callmap
again on the inputtf.data.Dataset
after eachadapt
. - If you are using a
tf.function
directly which calls a preprocessing layer, you need to calltf.function
again on your callable after each subsequent call toadapt
.
tf.keras.Model
example with multiple adapts:
layer = tf.keras.layers.experimental.preprocessing.Normalization(
axis=None)
layer.adapt([0, 2])
model = tf.keras.Sequential(layer)
model.predict([0, 1, 2])
array([-1., 0., 1.], dtype=float32)
layer.adapt([-1, 1])
model.compile() # This is needed to re-compile model.predict!
model.predict([0, 1, 2])
array([0., 1., 2.], dtype=float32)
tf.data.Dataset
example with multiple adapts:
layer = tf.keras.layers.experimental.preprocessing.Normalization(
axis=None)
layer.adapt([0, 2])
input_ds = tf.data.Dataset.range(3)
normalized_ds = input_ds.map(layer)
list(normalized_ds.as_numpy_iterator())
[array([-1.], dtype=float32),
array([0.], dtype=float32),
array([1.], dtype=float32)]
layer.adapt([-1, 1])
normalized_ds = input_ds.map(layer) # Re-map over the input dataset.
list(normalized_ds.as_numpy_iterator())
[array([0.], dtype=float32),
array([1.], dtype=float32),
array([2.], dtype=float32)]
Arguments | |
---|---|
data
|
The data to train on. It can be passed either as a tf.data Dataset, or as a numpy array. |
batch_size
|
Integer or None .
Number of samples per state update.
If unspecified, batch_size will default to 32.
Do not specify the batch_size if your data is in the
form of datasets, generators, or keras.utils.Sequence instances
(since they generate batches).
|
steps
|
Integer or None .
Total number of steps (batches of samples)
When training with input tensors such as
TensorFlow data tensors, the default None is equal to
the number of samples in your dataset divided by
the batch size, or 1 if that cannot be determined. If x is a
tf.data dataset, and 'steps' is None, the epoch will run until
the input dataset is exhausted. When passing an infinitely
repeating dataset, you must specify the steps argument. This
argument is not supported with array inputs.
|
compile
compile(
run_eagerly=None, steps_per_execution=None
)
Configures the layer for adapt
.
Arguments | |
---|---|
run_eagerly
|
Bool. Defaults to False . If True , this Model 's logic
will not be wrapped in a tf.function . Recommended to leave this as
None unless your Model cannot be run inside a tf.function .
steps_per_execution: Int. Defaults to 1. The number of batches to run
during each tf.function call. Running multiple batches inside a
single tf.function call can greatly improve performance on TPUs or
small models with a large Python overhead.
|
get_vocabulary
get_vocabulary(
include_special_tokens=True
)
Returns the current vocabulary of the layer.
Args | |
---|---|
include_special_tokens
|
If True, the returned vocabulary will include mask and OOV tokens, and a term's index in the vocabulary will equal the term's index when calling the layer. If False, the returned vocabulary will not include any mask or OOV tokens. |
reset_state
reset_state()
Resets the statistics of the preprocessing layer.
set_vocabulary
set_vocabulary(
vocabulary, idf_weights=None
)
Sets vocabulary (and optionally document frequency) data for this layer.
This method sets the vocabulary and idf weights for this layer directly,
instead of analyzing a dataset through adapt
. It should be used whenever
the vocab (and optionally document frequency) information is already known.
If vocabulary data is already present in the layer, this method will replace
it.
Args | |
---|---|
vocabulary
|
Either an array or a string path to a text file. If passing an array, can pass a tuple, list, 1D numpy array, or 1D tensor containing the vocbulary terms. If passing a file path, the file should contain one line per term in the vocabulary. |
idf_weights
|
A tuple, list, 1D numpy array, or 1D tensor of inverse
document frequency weights with equal length to vocabulary. Must be set
if output_mode is "tf_idf" . Should not be set otherwise.
|
Raises | |
---|---|
ValueError
|
If there are too many inputs, the inputs do not match, or input data is missing. |
RuntimeError
|
If the vocabulary cannot be set when this function is
called. This happens when "multi_hot" , "count" , and "tf_idf"
modes, if pad_to_max_tokens is False and the layer itself has already
been called.
|
RuntimeError
|
If a tensor vocabulary is passed outside of eager execution. |
update_state
update_state(
data
)
Accumulates statistics for the preprocessing layer.
Arguments | |
---|---|
data
|
A mini-batch of inputs to the layer. |
vocab_size
vocab_size()
vocabulary_size
vocabulary_size()
Gets the current size of the layer's vocabulary.
Returns | |
---|---|
The integer size of the voculary, including optional mask and oov indices. |