Retrieve Adagrad Momentum embedding parameters.
An op that retrieves optimization parameters from embedding to host memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this op is used to retrieve updated parameters before saving a checkpoint.
Nested Classes
class | RetrieveTPUEmbeddingAdagradMomentumParameters.Options | Optional attributes for RetrieveTPUEmbeddingAdagradMomentumParameters
|
Public Methods
Output<Float> |
accumulators()
Parameter accumulators updated by the Adagrad Momentum optimization algorithm.
|
static RetrieveTPUEmbeddingAdagradMomentumParameters.Options |
config(String config)
|
static RetrieveTPUEmbeddingAdagradMomentumParameters |
create(Scope scope, Long numShards, Long shardId, Options... options)
Factory method to create a class wrapping a new RetrieveTPUEmbeddingAdagradMomentumParameters operation.
|
Output<Float> |
momenta()
Parameter momenta updated by the Adagrad Momentum optimization algorithm.
|
Output<Float> |
parameters()
Parameter parameters updated by the Adagrad Momentum optimization algorithm.
|
static RetrieveTPUEmbeddingAdagradMomentumParameters.Options |
tableId(Long tableId)
|
static RetrieveTPUEmbeddingAdagradMomentumParameters.Options |
tableName(String tableName)
|
Inherited Methods
Public Methods
public Output<Float> accumulators ()
Parameter accumulators updated by the Adagrad Momentum optimization algorithm.
public static RetrieveTPUEmbeddingAdagradMomentumParameters create (Scope scope, Long numShards, Long shardId, Options... options)
Factory method to create a class wrapping a new RetrieveTPUEmbeddingAdagradMomentumParameters operation.
Parameters
scope | current scope |
---|---|
options | carries optional attributes values |
Returns
- a new instance of RetrieveTPUEmbeddingAdagradMomentumParameters
public Output<Float> momenta ()
Parameter momenta updated by the Adagrad Momentum optimization algorithm.
public Output<Float> parameters ()
Parameter parameters updated by the Adagrad Momentum optimization algorithm.