SparseMatrixSparseMatMul

public final class SparseMatrixSparseMatMul

Sparse-matrix-multiplies two CSR matrices `a` and `b`.

Performs a matrix multiplication of a sparse matrix `a` with a sparse matrix `b`; returns a sparse matrix `a * b`, unless either `a` or `b` is transposed or adjointed.

Each matrix may be transposed or adjointed (conjugated and transposed) according to the Boolean parameters `transpose_a`, `adjoint_a`, `transpose_b` and `adjoint_b`. At most one of `transpose_a` or `adjoint_a` may be True. Similarly, at most one of `transpose_b` or `adjoint_b` may be True.

The inputs must have compatible shapes. That is, the inner dimension of `a` must be equal to the outer dimension of `b`. This requirement is adjusted according to whether either `a` or `b` is transposed or adjointed.

The `type` parameter denotes the type of the matrix elements. Both `a` and `b` must have the same type. The supported types are: `float32`, `float64`, `complex64` and `complex128`.

Both `a` and `b` must have the same rank. Broadcasting is not supported. If they have rank 3, each batch of 2D CSRSparseMatrices within `a` and `b` must have the same dense shape.

The sparse matrix product may have numeric (non-structural) zeros. TODO(anudhyan): Consider adding a boolean attribute to control whether to prune zeros.

Usage example:

from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops
 
     a_indices = np.array([[0, 0], [2, 3], [2, 4], [3, 0]])
     a_values = np.array([1.0, 5.0, -1.0, -2.0], np.float32)
     a_dense_shape = [4, 5]
 
     b_indices = np.array([[0, 0], [3, 0], [3, 1]])
     b_values = np.array([2.0, 7.0, 8.0], np.float32)
     b_dense_shape = [5, 3]
 
     with tf.Session() as sess:
       # Define (COO format) Sparse Tensors over Numpy arrays
       a_st = tf.sparse.SparseTensor(a_indices, a_values, a_dense_shape)
       b_st = tf.sparse.SparseTensor(b_indices, b_values, b_dense_shape)
 
       # Convert SparseTensors to CSR SparseMatrix
       a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
           a_st.indices, a_st.values, a_st.dense_shape)
       b_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
           b_st.indices, b_st.values, b_st.dense_shape)
 
       # Compute the CSR SparseMatrix matrix multiplication
       c_sm = sparse_csr_matrix_ops.sparse_matrix_sparse_mat_mul(
           a=a_sm, b=b_sm, type=tf.float32)
 
       # Convert the CSR SparseMatrix product to a dense Tensor
       c_sm_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense(
           c_sm, tf.float32)
       # Evaluate the dense Tensor value
       c_sm_dense_value = sess.run(c_sm_dense)
 
`c_sm_dense_value` stores the dense matrix product:
[[  2.   0.   0.]
      [  0.   0.   0.]
      [ 35.  40.   0.]
      [ -4.   0.   0.]]
 
a: A `CSRSparseMatrix`. b: A `CSRSparseMatrix` with the same type and rank as `a`. type: The type of both `a` and `b`. transpose_a: If True, `a` transposed before multiplication. transpose_b: If True, `b` transposed before multiplication. adjoint_a: If True, `a` adjointed before multiplication. adjoint_b: If True, `b` adjointed before multiplication.

Nested Classes

class SparseMatrixSparseMatMul.Options Optional attributes for SparseMatrixSparseMatMul  

Public Methods

static SparseMatrixSparseMatMul.Options
adjointA(Boolean adjointA)
static SparseMatrixSparseMatMul.Options
adjointB(Boolean adjointB)
Output<Object>
asOutput()
Returns the symbolic handle of a tensor.
Output<?>
c()
A CSRSparseMatrix.
static <T> SparseMatrixSparseMatMul
create(Scope scope, Operand<?> a, Operand<?> b, Class<T> type, Options... options)
Factory method to create a class wrapping a new SparseMatrixSparseMatMul operation.
static SparseMatrixSparseMatMul.Options
transposeA(Boolean transposeA)
static SparseMatrixSparseMatMul.Options
transposeB(Boolean transposeB)

Inherited Methods

Public Methods

public static SparseMatrixSparseMatMul.Options adjointA (Boolean adjointA)

Parameters
adjointA Indicates whether `a` should be conjugate-transposed.

public static SparseMatrixSparseMatMul.Options adjointB (Boolean adjointB)

Parameters
adjointB Indicates whether `b` should be conjugate-transposed.

public Output<Object> asOutput ()

Returns the symbolic handle of a tensor.

Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.

public Output<?> c ()

A CSRSparseMatrix.

public static SparseMatrixSparseMatMul create (Scope scope, Operand<?> a, Operand<?> b, Class<T> type, Options... options)

Factory method to create a class wrapping a new SparseMatrixSparseMatMul operation.

Parameters
scope current scope
a A CSRSparseMatrix.
b A CSRSparseMatrix.
options carries optional attributes values
Returns
  • a new instance of SparseMatrixSparseMatMul

public static SparseMatrixSparseMatMul.Options transposeA (Boolean transposeA)

Parameters
transposeA Indicates whether `a` should be transposed.

public static SparseMatrixSparseMatMul.Options transposeB (Boolean transposeB)

Parameters
transposeB Indicates whether `b` should be transposed.