View source on GitHub |
Bring in all of the public TensorFlow interface into this module.
Modules
app
module: Generic entry point script.
audio
module: Public API for tf.audio namespace.
autograph
module: Conversion of eager-style Python into TensorFlow graph code.
bitwise
module: Operations for manipulating the binary representations of integers.
compat
module: Compatibility functions.
config
module: Public API for tf.config namespace.
data
module: tf.data.Dataset
API for input pipelines.
debugging
module: Public API for tf.debugging namespace.
distribute
module: Library for running a computation across multiple devices.
distributions
module: Core module for TensorFlow distribution objects and helpers.
dtypes
module: Public API for tf.dtypes namespace.
errors
module: Exception types for TensorFlow errors.
estimator
module: Estimator: High level tools for working with models.
experimental
module: Public API for tf.experimental namespace.
feature_column
module: Public API for tf.feature_column namespace.
flags
module: Import router for absl.flags. See https://github.com/abseil/abseil-py
gfile
module: Import router for file_io.
graph_util
module: Helpers to manipulate a tensor graph in python.
image
module: Image ops.
initializers
module: Public API for tf.initializers namespace.
io
module: Public API for tf.io namespace.
keras
module: Implementation of the Keras API, the high-level API of TensorFlow.
layers
module: Public API for tf.keras.internal.legacy.layers namespace.
linalg
module: Operations for linear algebra.
lite
module: Public API for tf.lite namespace.
logging
module: Logging and Summary Operations.
lookup
module: Public API for tf.lookup namespace.
losses
module: Loss operations for use in neural networks.
manip
module: Operators for manipulating tensors.
math
module: Math Operations.
metrics
module: Evaluation-related metrics.
mixed_precision
module: Public API for tf.mixed_precision namespace.
mlir
module: Public API for tf.mlir namespace.
nest
module: Functions that work with structures.
nn
module: Primitive Neural Net (NN) Operations.
profiler
module: Public API for tf.profiler namespace.
python_io
module: Python functions for directly manipulating TFRecord-formatted files.
quantization
module: Public API for tf.quantization namespace.
queue
module: Public API for tf.queue namespace.
ragged
module: Ragged Tensors.
random
module: Public API for tf.random namespace.
raw_ops
module: Public API for tf.raw_ops namespace.
resource_loader
module: Resource management library.
saved_model
module: Public API for tf.saved_model namespace.
sets
module: Tensorflow set operations.
signal
module: Signal processing operations.
sparse
module: Sparse Tensor Representation.
spectral
module: Public API for tf.spectral namespace.
strings
module: Operations for working with string Tensors.
summary
module: Operations for writing summary data, for use in analysis and visualization.
sysconfig
module: System configuration library.
test
module: Testing.
tpu
module: Ops related to Tensor Processing Units.
train
module: Support for training models.
types
module: Public TensorFlow type definitions.
user_ops
module: Public API for tf.user_ops namespace.
version
module: Public API for tf.version namespace.
xla
module: Public API for tf.xla namespace.
Classes
class AggregationMethod
: A class listing aggregation methods used to combine gradients.
class AttrValue
: A ProtocolMessage
class ConditionalAccumulator
: A conditional accumulator for aggregating gradients.
class ConditionalAccumulatorBase
: A conditional accumulator for aggregating gradients.
class ConfigProto
: A ProtocolMessage
class CriticalSection
: Critical section.
class DType
: Represents the type of the elements in a Tensor
.
class DeviceSpec
: Represents a (possibly partial) specification for a TensorFlow device.
class Dimension
: Represents the value of one dimension in a TensorShape.
class Event
: A ProtocolMessage
class FIFOQueue
: A queue implementation that dequeues elements in first-in first-out order.
class FixedLenFeature
: Configuration for parsing a fixed-length input feature.
class FixedLenSequenceFeature
: Configuration for parsing a variable-length input feature into a Tensor
.
class FixedLengthRecordReader
: A Reader that outputs fixed-length records from a file.
class GPUOptions
: A ProtocolMessage
class GradientTape
: Record operations for automatic differentiation.
class Graph
: A TensorFlow computation, represented as a dataflow graph.
class GraphDef
: A protobuf containing the graph of operations.
class GraphKeys
: Standard names to use for graph collections.
class GraphOptions
: A ProtocolMessage
class HistogramProto
: A ProtocolMessage
class IdentityReader
: A Reader that outputs the queued work as both the key and value.
class IndexedSlices
: A sparse representation of a set of tensor slices at given indices.
class IndexedSlicesSpec
: Type specification for a tf.IndexedSlices
.
class InteractiveSession
: A TensorFlow Session
for use in interactive contexts, such as a shell.
class LMDBReader
: A Reader that outputs the records from a LMDB file.
class LogMessage
: A ProtocolMessage
class MetaGraphDef
: A ProtocolMessage
class Module
: Base neural network module class.
class NameAttrList
: A ProtocolMessage
class NodeDef
: A ProtocolMessage
class OpError
: The base class for TensorFlow exceptions.
class Operation
: Represents a graph node that performs computation on tensors.
class OptimizerOptions
: A ProtocolMessage
class OptionalSpec
: Type specification for tf.experimental.Optional
.
class PaddingFIFOQueue
: A FIFOQueue that supports batching variable-sized tensors by padding.
class PriorityQueue
: A queue implementation that dequeues elements in prioritized order.
class QueueBase
: Base class for queue implementations.
class RaggedTensor
: Represents a ragged tensor.
class RaggedTensorSpec
: Type specification for a tf.RaggedTensor
.
class RandomShuffleQueue
: A queue implementation that dequeues elements in a random order.
class ReaderBase
: Base class for different Reader types, that produce a record every step.
class RegisterGradient
: A decorator for registering the gradient function for an op type.
class RunMetadata
: A ProtocolMessage
class RunOptions
: A ProtocolMessage
class Session
: A class for running TensorFlow operations.
class SessionLog
: A ProtocolMessage
class SparseConditionalAccumulator
: A conditional accumulator for aggregating sparse gradients.
class SparseFeature
: Configuration for parsing a sparse input feature from an Example
.
class SparseTensor
: Represents a sparse tensor.
class SparseTensorSpec
: Type specification for a tf.sparse.SparseTensor
.
class SparseTensorValue
: SparseTensorValue(indices, values, dense_shape)
class Summary
: A ProtocolMessage
class SummaryMetadata
: A ProtocolMessage
class TFRecordReader
: A Reader that outputs the records from a TFRecords file.
class Tensor
: A tf.Tensor
represents a multidimensional array of elements.
class TensorArray
: Class wrapping dynamic-sized, per-time-step, Tensor arrays.
class TensorArraySpec
: Type specification for a tf.TensorArray
.
class TensorInfo
: A ProtocolMessage
class TensorShape
: Represents the shape of a Tensor
.
class TensorSpec
: Describes a tf.Tensor.
class TextLineReader
: A Reader that outputs the lines of a file delimited by newlines.
class TypeSpec
: Specifies a TensorFlow value type.
class UnconnectedGradients
: Controls how gradient computation behaves when y does not depend on x.
class VarLenFeature
: Configuration for parsing a variable-length input feature.
class Variable
: See the Variables Guide.
class VariableAggregation
: Indicates how a distributed variable will be aggregated.
class VariableScope
: Variable scope object to carry defaults to provide to get_variable
.
class VariableSynchronization
: Indicates when a distributed variable will be synced.
class WholeFileReader
: A Reader that outputs the entire contents of a file as a value.
class constant_initializer
: Initializer that generates tensors with constant values.
class glorot_normal_initializer
: The Glorot normal initializer, also called Xavier normal initializer.
class glorot_uniform_initializer
: The Glorot uniform initializer, also called Xavier uniform initializer.
class name_scope
: A context manager for use when defining a Python op.
class ones_initializer
: Initializer that generates tensors initialized to 1.
class orthogonal_initializer
: Initializer that generates an orthogonal matrix.
class random_normal_initializer
: Initializer that generates tensors with a normal distribution.
class random_uniform_initializer
: Initializer that generates tensors with a uniform distribution.
class truncated_normal_initializer
: Initializer that generates a truncated normal distribution.
class uniform_unit_scaling_initializer
: Initializer that generates tensors without scaling variance.
class variable_scope
: A context manager for defining ops that creates variables (layers).
class variance_scaling_initializer
: Initializer capable of adapting its scale to the shape of weights tensors.
class zeros_initializer
: Initializer that generates tensors initialized to 0.
Functions
Assert(...)
: Asserts that the given condition is true.
NoGradient(...)
: Specifies that ops of type op_type
is not differentiable.
NotDifferentiable(...)
: Specifies that ops of type op_type
is not differentiable.
Print(...)
: Prints a list of tensors. (deprecated)
abs(...)
: Computes the absolute value of a tensor.
accumulate_n(...)
: Returns the element-wise sum of a list of tensors. (deprecated)
acos(...)
: Computes acos of x element-wise.
acosh(...)
: Computes inverse hyperbolic cosine of x element-wise.
add(...)
: Returns x + y element-wise.
add_check_numerics_ops(...)
: Connect a tf.debugging.check_numerics
to every floating point tensor.
add_n(...)
: Returns the element-wise sum of a list of tensors.
add_to_collection(...)
: Wrapper for Graph.add_to_collection()
using the default graph.
add_to_collections(...)
: Wrapper for Graph.add_to_collections()
using the default graph.
all_variables(...)
: Use tf.compat.v1.global_variables
instead. (deprecated)
angle(...)
: Returns the element-wise argument of a complex (or real) tensor.
approx_top_k(...)
: Returns min/max k values and their indices of the input operand in an approximate manner.
arg_max(...)
: Returns the index with the largest value across dimensions of a tensor.
arg_min(...)
: Returns the index with the smallest value across dimensions of a tensor.
argmax(...)
: Returns the index with the largest value across axes of a tensor. (deprecated arguments)
argmin(...)
: Returns the index with the smallest value across axes of a tensor. (deprecated arguments)
argsort(...)
: Returns the indices of a tensor that give its sorted order along an axis.
as_dtype(...)
: Converts the given type_value
to a DType
.
as_string(...)
: Converts each entry in the given tensor to strings.
asin(...)
: Computes the trignometric inverse sine of x element-wise.
asinh(...)
: Computes inverse hyperbolic sine of x element-wise.
assert_equal(...)
: Assert the condition x == y
holds element-wise.
assert_greater(...)
: Assert the condition x > y
holds element-wise.
assert_greater_equal(...)
: Assert the condition x >= y
holds element-wise.
assert_integer(...)
: Assert that x
is of integer dtype.
assert_less(...)
: Assert the condition x < y
holds element-wise.
assert_less_equal(...)
: Assert the condition x <= y
holds element-wise.
assert_near(...)
: Assert the condition x
and y
are close element-wise.
assert_negative(...)
: Assert the condition x < 0
holds element-wise.
assert_non_negative(...)
: Assert the condition x >= 0
holds element-wise.
assert_non_positive(...)
: Assert the condition x <= 0
holds element-wise.
assert_none_equal(...)
: Assert the condition x != y
holds element-wise.
assert_positive(...)
: Assert the condition x > 0
holds element-wise.
assert_proper_iterable(...)
: Static assert that values is a "proper" iterable.
assert_rank(...)
: Assert x
has rank equal to rank
.
assert_rank_at_least(...)
: Assert x
has rank equal to rank
or higher.
assert_rank_in(...)
: Assert x
has rank in ranks
.
assert_same_float_dtype(...)
: Validate and return float type based on tensors
and dtype
.
assert_scalar(...)
: Asserts that the given tensor
is a scalar (i.e. zero-dimensional).
assert_type(...)
: Statically asserts that the given Tensor
is of the specified type.
assert_variables_initialized(...)
: Returns an Op to check if variables are initialized.
assign(...)
: Update ref
by assigning value
to it.
assign_add(...)
: Update ref
by adding value
to it.
assign_sub(...)
: Update ref
by subtracting value
from it.
atan(...)
: Computes the trignometric inverse tangent of x element-wise.
atan2(...)
: Computes arctangent of y/x
element-wise, respecting signs of the arguments.
atanh(...)
: Computes inverse hyperbolic tangent of x element-wise.
batch_gather(...)
: Gather slices from params according to indices with leading batch dims. (deprecated)
batch_scatter_update(...)
: Generalization of tf.compat.v1.scatter_update
to axis different than 0. (deprecated)
batch_to_space(...)
: BatchToSpace for 4-D tensors of type T.
batch_to_space_nd(...)
: BatchToSpace for N-D tensors of type T.
betainc(...)
: Compute the regularized incomplete beta integral \(I_x(a, b)\).
bincount(...)
: Counts the number of occurrences of each value in an integer array.
bitcast(...)
: Bitcasts a tensor from one type to another without copying data.
boolean_mask(...)
: Apply boolean mask to tensor.
broadcast_dynamic_shape(...)
: Computes the shape of a broadcast given symbolic shapes.
broadcast_static_shape(...)
: Computes the shape of a broadcast given known shapes.
broadcast_to(...)
: Broadcast an array for a compatible shape.
case(...)
: Create a case operation.
cast(...)
: Casts a tensor to a new type.
ceil(...)
: Return the ceiling of the input, element-wise.
check_numerics(...)
: Checks a tensor for NaN and Inf values.
cholesky(...)
: Computes the Cholesky decomposition of one or more square matrices.
cholesky_solve(...)
: Solves systems of linear eqns A X = RHS
, given Cholesky factorizations.
clip_by_average_norm(...)
: Clips tensor values to a maximum average L2-norm. (deprecated)
clip_by_global_norm(...)
: Clips values of multiple tensors by the ratio of the sum of their norms.
clip_by_norm(...)
: Clips tensor values to a maximum L2-norm.
clip_by_value(...)
: Clips tensor values to a specified min and max.
colocate_with(...)
: DEPRECATED FUNCTION
complex(...)
: Converts two real numbers to a complex number.
concat(...)
: Concatenates tensors along one dimension.
cond(...)
: Return true_fn()
if the predicate pred
is true else false_fn()
. (deprecated arguments)
confusion_matrix(...)
: Computes the confusion matrix from predictions and labels.
conj(...)
: Returns the complex conjugate of a complex number.
constant(...)
: Creates a constant tensor.
container(...)
: Wrapper for Graph.container()
using the default graph.
control_dependencies(...)
: Wrapper for Graph.control_dependencies()
using the default graph.
control_flow_v2_enabled(...)
: Returns True
if v2 control flow is enabled.
convert_to_tensor(...)
: Converts the given value
to a Tensor
.
convert_to_tensor_or_indexed_slices(...)
: Converts the given object to a Tensor
or an IndexedSlices
.
convert_to_tensor_or_sparse_tensor(...)
: Converts value to a SparseTensor
or Tensor
.
cos(...)
: Computes cos of x element-wise.
cosh(...)
: Computes hyperbolic cosine of x element-wise.
count_nonzero(...)
: Computes number of nonzero elements across dimensions of a tensor. (deprecated arguments) (deprecated arguments)
count_up_to(...)
: Increments 'ref' until it reaches 'limit'. (deprecated)
create_partitioned_variables(...)
: Create a list of partitioned variables according to the given slicing
. (deprecated)
cross(...)
: Compute the pairwise cross product.
cumprod(...)
: Compute the cumulative product of the tensor x
along axis
.
cumsum(...)
: Compute the cumulative sum of the tensor x
along axis
.
custom_gradient(...)
: Decorator to define a function with a custom gradient.
decode_base64(...)
: Decode web-safe base64-encoded strings.
decode_compressed(...)
: Decompress strings.
decode_csv(...)
: Convert CSV records to tensors. Each column maps to one tensor.
decode_json_example(...)
: Convert JSON-encoded Example records to binary protocol buffer strings.
decode_raw(...)
: Convert raw byte strings into tensors. (deprecated arguments)
delete_session_tensor(...)
: Delete the tensor for the given tensor handle.
depth_to_space(...)
: DepthToSpace for tensors of type T.
dequantize(...)
: Dequantize the 'input' tensor into a float or bfloat16 Tensor.
deserialize_many_sparse(...)
: Deserialize and concatenate SparseTensors
from a serialized minibatch.
device(...)
: Wrapper for Graph.device()
using the default graph.
diag(...)
: Returns a diagonal tensor with a given diagonal values.
diag_part(...)
: Returns the diagonal part of the tensor.
digamma(...)
: Computes Psi, the derivative of Lgamma (the log of the absolute value of
dimension_at_index(...)
: Compatibility utility required to allow for both V1 and V2 behavior in TF.
dimension_value(...)
: Compatibility utility required to allow for both V1 and V2 behavior in TF.
disable_control_flow_v2(...)
: Opts out of control flow v2.
disable_eager_execution(...)
: Disables eager execution.
disable_resource_variables(...)
: Opts out of resource variables. (deprecated)
disable_tensor_equality(...)
: Compare Tensors by their id and be hashable.
disable_v2_behavior(...)
: Disables TensorFlow 2.x behaviors.
disable_v2_tensorshape(...)
: Disables the V2 TensorShape behavior and reverts to V1 behavior.
div(...)
: Divides x / y elementwise (using Python 2 division operator semantics). (deprecated)
div_no_nan(...)
: Computes a safe divide which returns 0 if y
(denominator) is zero.
divide(...)
: Computes Python style division of x
by y
.
dynamic_partition(...)
: Partitions data
into num_partitions
tensors using indices from partitions
.
dynamic_stitch(...)
: Interleave the values from the data
tensors into a single tensor.
edit_distance(...)
: Computes the Levenshtein distance between sequences.
einsum(...)
: Tensor contraction over specified indices and outer product.
enable_control_flow_v2(...)
: Use control flow v2.
enable_eager_execution(...)
: Enables eager execution for the lifetime of this program.
enable_resource_variables(...)
: Creates resource variables by default.
enable_tensor_equality(...)
: Compare Tensors with element-wise comparison and thus be unhashable.
enable_v2_behavior(...)
: Enables TensorFlow 2.x behaviors.
enable_v2_tensorshape(...)
: In TensorFlow 2.0, iterating over a TensorShape instance returns values.
encode_base64(...)
: Encode strings into web-safe base64 format.
ensure_shape(...)
: Updates the shape of a tensor and checks at runtime that the shape holds.
equal(...)
: Returns the truth value of (x == y) element-wise.
erf(...)
: Computes the Gauss error function of x
element-wise. In statistics, for non-negative values of \(x\), the error function has the following interpretation: for a random variable \(Y\) that is normally distributed with mean 0 and variance \(1/\sqrt{2}\), \(erf(x)\) is the probability that \(Y\) falls in the range \([−x, x]\).
erfc(...)
: Computes the complementary error function of x
element-wise.
executing_eagerly(...)
: Checks whether the current thread has eager execution enabled.
executing_eagerly_outside_functions(...)
: Returns True if executing eagerly, even if inside a graph function.
exp(...)
: Computes exponential of x element-wise. \(y = e^x\).
expand_dims(...)
: Returns a tensor with a length 1 axis inserted at index axis
. (deprecated arguments)
expm1(...)
: Computes exp(x) - 1
element-wise.
extract_image_patches(...)
: Extract patches
from images
and put them in the "depth" output dimension.
extract_volume_patches(...)
: Extract patches
from input
and put them in the "depth"
output dimension. 3D extension of extract_image_patches
.
eye(...)
: Construct an identity matrix, or a batch of matrices.
fake_quant_with_min_max_args(...)
: Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type.
fake_quant_with_min_max_args_gradient(...)
: Compute gradients for a FakeQuantWithMinMaxArgs operation.
fake_quant_with_min_max_vars(...)
: Fake-quantize the 'inputs' tensor of type float via global float scalars
fake_quant_with_min_max_vars_gradient(...)
: Compute gradients for a FakeQuantWithMinMaxVars operation.
fake_quant_with_min_max_vars_per_channel(...)
: Fake-quantize the 'inputs' tensor of type float via per-channel floats
fake_quant_with_min_max_vars_per_channel_gradient(...)
: Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
fft(...)
: Fast Fourier transform.
fft2d(...)
: 2D fast Fourier transform.
fft3d(...)
: 3D fast Fourier transform.
fill(...)
: Creates a tensor filled with a scalar value.
fingerprint(...)
: Generates fingerprint values.
fixed_size_partitioner(...)
: Partitioner to specify a fixed number of shards along given axis.
floor(...)
: Returns element-wise largest integer not greater than x.
floor_div(...)
: Returns x // y element-wise.
floordiv(...)
: Divides x / y
elementwise, rounding toward the most negative integer.
floormod(...)
: Returns element-wise remainder of division.
foldl(...)
: foldl on the list of tensors unpacked from elems
on dimension 0.
foldr(...)
: foldr on the list of tensors unpacked from elems
on dimension 0.
function(...)
: Compiles a function into a callable TensorFlow graph. (deprecated arguments) (deprecated arguments) (deprecated arguments)
gather(...)
: Gather slices from params axis axis
according to indices. (deprecated arguments)
gather_nd(...)
: Gather slices from params
into a Tensor with shape specified by indices
.
get_collection(...)
: Wrapper for Graph.get_collection()
using the default graph.
get_collection_ref(...)
: Wrapper for Graph.get_collection_ref()
using the default graph.
get_default_graph(...)
: Returns the default graph for the current thread.
get_default_session(...)
: Returns the default session for the current thread.
get_local_variable(...)
: Gets an existing local variable or creates a new one.
get_logger(...)
: Return TF logger instance.
get_seed(...)
: Returns the local seeds an operation should use given an op-specific seed.
get_session_handle(...)
: Return the handle of data
.
get_session_tensor(...)
: Get the tensor of type dtype
by feeding a tensor handle.
get_static_value(...)
: Returns the constant value of the given tensor, if efficiently calculable.
get_variable(...)
: Gets an existing variable with these parameters or create a new one.
get_variable_scope(...)
: Returns the current variable scope.
global_norm(...)
: Computes the global norm of multiple tensors.
global_variables(...)
: Returns global variables.
global_variables_initializer(...)
: Returns an Op that initializes global variables.
grad_pass_through(...)
: Creates a grad-pass-through op with the forward behavior provided in f.
gradients(...)
: Constructs symbolic derivatives of sum of ys
w.r.t. x in xs
.
greater(...)
: Returns the truth value of (x > y) element-wise.
greater_equal(...)
: Returns the truth value of (x >= y) element-wise.
group(...)
: Create an op that groups multiple operations.
guarantee_const(...)
: Promise to the TF runtime that the input tensor is a constant. (deprecated)
hessians(...)
: Constructs the Hessian of sum of ys
with respect to x
in xs
.
histogram_fixed_width(...)
: Return histogram of values.
histogram_fixed_width_bins(...)
: Bins the given values for use in a histogram.
identity(...)
: Return a Tensor with the same shape and contents as input.
identity_n(...)
: Returns a list of tensors with the same shapes and contents as the input
ifft(...)
: Inverse fast Fourier transform.
ifft2d(...)
: Inverse 2D fast Fourier transform.
ifft3d(...)
: Inverse 3D fast Fourier transform.
igamma(...)
: Compute the lower regularized incomplete Gamma function P(a, x)
.
igammac(...)
: Compute the upper regularized incomplete Gamma function Q(a, x)
.
imag(...)
: Returns the imaginary part of a complex (or real) tensor.
import_graph_def(...)
: Imports the graph from graph_def
into the current default Graph
. (deprecated arguments)
init_scope(...)
: A context manager that lifts ops out of control-flow scopes and function-building graphs.
initialize_all_tables(...)
: Returns an Op that initializes all tables of the default graph. (deprecated)
initialize_all_variables(...)
: See tf.compat.v1.global_variables_initializer
. (deprecated)
initialize_local_variables(...)
: See tf.compat.v1.local_variables_initializer
. (deprecated)
initialize_variables(...)
: See tf.compat.v1.variables_initializer
. (deprecated)
invert_permutation(...)
: Computes the inverse permutation of a tensor.
is_finite(...)
: Returns which elements of x are finite.
is_inf(...)
: Returns which elements of x are Inf.
is_nan(...)
: Returns which elements of x are NaN.
is_non_decreasing(...)
: Returns True
if x
is non-decreasing.
is_numeric_tensor(...)
: Returns True
if the elements of tensor
are numbers.
is_strictly_increasing(...)
: Returns True
if x
is strictly increasing.
is_tensor(...)
: Checks whether x
is a TF-native type that can be passed to many TF ops.
is_variable_initialized(...)
: Tests if a variable has been initialized.
lbeta(...)
: Computes \(ln(|Beta(x)|)\), reducing along the last dimension.
less(...)
: Returns the truth value of (x < y) element-wise.
less_equal(...)
: Returns the truth value of (x <= y) element-wise.
lgamma(...)
: Computes the log of the absolute value of Gamma(x)
element-wise.
lin_space(...)
: Generates evenly-spaced values in an interval along a given axis.
linspace(...)
: Generates evenly-spaced values in an interval along a given axis.
load_file_system_library(...)
: Loads a TensorFlow plugin, containing file system implementation. (deprecated)
load_library(...)
: Loads a TensorFlow plugin.
load_op_library(...)
: Loads a TensorFlow plugin, containing custom ops and kernels.
local_variables(...)
: Returns local variables.
local_variables_initializer(...)
: Returns an Op that initializes all local variables.
log(...)
: Computes natural logarithm of x element-wise.
log1p(...)
: Computes natural logarithm of (1 + x) element-wise.
log_sigmoid(...)
: Computes log sigmoid of x
element-wise.
logical_and(...)
: Returns the truth value of x AND y element-wise.
logical_not(...)
: Returns the truth value of NOT x
element-wise.
logical_or(...)
: Returns the truth value of x OR y element-wise.
logical_xor(...)
: Logical XOR function.
make_ndarray(...)
: Create a numpy ndarray from a tensor.
make_template(...)
: Given an arbitrary function, wrap it so that it does variable sharing.
make_tensor_proto(...)
: Create a TensorProto.
map_fn(...)
: Transforms elems
by applying fn
to each element unstacked on axis 0. (deprecated arguments)
matching_files(...)
: Returns the set of files matching one or more glob patterns.
matmul(...)
: Multiplies matrix a
by matrix b
, producing a
* b
.
matrix_band_part(...)
: Copy a tensor setting everything outside a central band in each innermost matrix to zero.
matrix_determinant(...)
: Computes the determinant of one or more square matrices.
matrix_diag(...)
: Returns a batched diagonal tensor with given batched diagonal values.
matrix_diag_part(...)
: Returns the batched diagonal part of a batched tensor.
matrix_inverse(...)
: Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes).
matrix_set_diag(...)
: Returns a batched matrix tensor with new batched diagonal values.
matrix_solve(...)
: Solves systems of linear equations.
matrix_solve_ls(...)
: Solves one or more linear least-squares problems.
matrix_square_root(...)
: Computes the matrix square root of one or more square matrices:
matrix_transpose(...)
: Transposes last two dimensions of tensor a
.
matrix_triangular_solve(...)
: Solve systems of linear equations with upper or lower triangular matrices.
maximum(...)
: Returns the max of x and y (i.e. x > y ? x : y) element-wise.
meshgrid(...)
: Broadcasts parameters for evaluation on an N-D grid.
min_max_variable_partitioner(...)
: Partitioner to allocate minimum size per slice.
minimum(...)
: Returns the min of x and y (i.e. x < y ? x : y) element-wise.
mod(...)
: Returns element-wise remainder of division.
model_variables(...)
: Returns all variables in the MODEL_VARIABLES collection.
moving_average_variables(...)
: Returns all variables that maintain their moving averages.
multinomial(...)
: Draws samples from a multinomial distribution. (deprecated)
multiply(...)
: Returns an element-wise x * y.
negative(...)
: Computes numerical negative value element-wise.
no_gradient(...)
: Specifies that ops of type op_type
is not differentiable.
no_op(...)
: Does nothing. Only useful as a placeholder for control edges.
no_regularizer(...)
: Use this function to prevent regularization of variables.
nondifferentiable_batch_function(...)
: Batches the computation done by the decorated function.
norm(...)
: Computes the norm of vectors, matrices, and tensors. (deprecated arguments)
not_equal(...)
: Returns the truth value of (x != y) element-wise.
numpy_function(...)
: Wraps a python function and uses it as a TensorFlow op.
one_hot(...)
: Returns a one-hot tensor.
ones(...)
: Creates a tensor with all elements set to one (1).
ones_like(...)
: Creates a tensor with all elements set to 1.
op_scope(...)
: DEPRECATED. Same as name_scope above, just different argument order.
pad(...)
: Pads a tensor.
parallel_stack(...)
: Stacks a list of rank-R
tensors into one rank-(R+1)
tensor in parallel.
parse_example(...)
: Parses Example
protos into a dict
of tensors.
parse_single_example(...)
: Parses a single Example
proto.
parse_single_sequence_example(...)
: Parses a single SequenceExample
proto.
parse_tensor(...)
: Transforms a serialized tensorflow.TensorProto proto into a Tensor.
placeholder(...)
: Inserts a placeholder for a tensor that will be always fed.
placeholder_with_default(...)
: A placeholder op that passes through input
when its output is not fed.
polygamma(...)
: Compute the polygamma function \(\psi^{(n)}(x)\).
pow(...)
: Computes the power of one value to another.
print(...)
: Print the specified inputs.
py_func(...)
: Wraps a python function and uses it as a TensorFlow op.
py_function(...)
: Wraps a python function into a TensorFlow op that executes it eagerly.
qr(...)
: Computes the QR decompositions of one or more matrices.
quantize(...)
: Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.
quantize_v2(...)
: Please use tf.quantization.quantize
instead.
quantized_concat(...)
: Concatenates quantized tensors along one dimension.
random_crop(...)
: Randomly crops a tensor to a given size.
random_gamma(...)
: Draws shape
samples from each of the given Gamma distribution(s).
random_index_shuffle(...)
: Outputs the position of value
in a permutation of [0, ..., max_index].
random_normal(...)
: Outputs random values from a normal distribution.
random_poisson(...)
: Draws shape
samples from each of the given Poisson distribution(s).
random_shuffle(...)
: Randomly shuffles a tensor along its first dimension.
random_uniform(...)
: Outputs random values from a uniform distribution.
range(...)
: Creates a sequence of numbers.
rank(...)
: Returns the rank of a tensor.
read_file(...)
: Reads the contents of file.
real(...)
: Returns the real part of a complex (or real) tensor.
realdiv(...)
: Returns x / y element-wise for real types.
reciprocal(...)
: Computes the reciprocal of x element-wise.
recompute_grad(...)
: Defines a function as a recompute-checkpoint for the tape auto-diff.
reduce_all(...)
: Computes tf.math.logical_and
of elements across dimensions of a tensor. (deprecated arguments)
reduce_any(...)
: Computes tf.math.logical_or
of elements across dimensions of a tensor. (deprecated arguments)
reduce_join(...)
: Joins all strings into a single string, or joins along an axis.
reduce_logsumexp(...)
: Computes log(sum(exp(elements across dimensions of a tensor))). (deprecated arguments)
reduce_max(...)
: Computes tf.math.maximum
of elements across dimensions of a tensor. (deprecated arguments)
reduce_mean(...)
: Computes the mean of elements across dimensions of a tensor.
reduce_min(...)
: Computes the tf.math.minimum
of elements across dimensions of a tensor. (deprecated arguments)
reduce_prod(...)
: Computes tf.math.multiply
of elements across dimensions of a tensor. (deprecated arguments)
reduce_sum(...)
: Computes the sum of elements across dimensions of a tensor. (deprecated arguments)
regex_replace(...)
: Replace elements of input
matching regex pattern
with rewrite
.
register_tensor_conversion_function(...)
: Registers a function for converting objects of base_type
to Tensor
.
repeat(...)
: Repeat elements of input
.
report_uninitialized_variables(...)
: Adds ops to list the names of uninitialized variables.
required_space_to_batch_paddings(...)
: Calculate padding required to make block_shape divide input_shape.
reset_default_graph(...)
: Clears the default graph stack and resets the global default graph.
reshape(...)
: Reshapes a tensor.
resource_variables_enabled(...)
: Returns True
if resource variables are enabled.
reverse(...)
: Reverses specific dimensions of a tensor.
reverse_sequence(...)
: Reverses variable length slices. (deprecated arguments) (deprecated arguments)
reverse_v2(...)
: Reverses specific dimensions of a tensor.
rint(...)
: Returns element-wise integer closest to x.
roll(...)
: Rolls the elements of a tensor along an axis.
round(...)
: Rounds the values of a tensor to the nearest integer, element-wise.
rsqrt(...)
: Computes reciprocal of square root of x element-wise.
saturate_cast(...)
: Performs a safe saturating cast of value
to dtype
.
scalar_mul(...)
: Multiplies a scalar times a Tensor
or IndexedSlices
object.
scan(...)
: scan on the list of tensors unpacked from elems
on dimension 0.
scatter_add(...)
: Adds sparse updates to the variable referenced by resource
.
scatter_div(...)
: Divides a variable reference by sparse updates.
scatter_max(...)
: Reduces sparse updates into a variable reference using the max
operation.
scatter_min(...)
: Reduces sparse updates into a variable reference using the min
operation.
scatter_mul(...)
: Multiplies sparse updates into a variable reference.
scatter_nd(...)
: Scatters updates
into a tensor of shape shape
according to indices
.
scatter_nd_add(...)
: Applies sparse addition to individual values or slices in a Variable.
scatter_nd_sub(...)
: Applies sparse subtraction to individual values or slices in a Variable.
scatter_nd_update(...)
: Applies sparse updates
to individual values or slices in a Variable.
scatter_sub(...)
: Subtracts sparse updates to a variable reference.
scatter_update(...)
: Applies sparse updates to a variable reference.
searchsorted(...)
: Searches for where a value would go in a sorted sequence.
segment_max(...)
: Computes the maximum along segments of a tensor.
segment_mean(...)
: Computes the mean along segments of a tensor.
segment_min(...)
: Computes the minimum along segments of a tensor.
segment_prod(...)
: Computes the product along segments of a tensor.
segment_sum(...)
: Computes the sum along segments of a tensor.
self_adjoint_eig(...)
: Computes the eigen decomposition of a batch of self-adjoint matrices.
self_adjoint_eigvals(...)
: Computes the eigenvalues of one or more self-adjoint matrices.
sequence_mask(...)
: Returns a mask tensor representing the first N positions of each cell.
serialize_many_sparse(...)
: Serialize N
-minibatch SparseTensor
into an [N, 3]
Tensor
.
serialize_sparse(...)
: Serialize a SparseTensor
into a 3-vector (1-D Tensor
) object.
serialize_tensor(...)
: Transforms a Tensor into a serialized TensorProto proto.
set_random_seed(...)
: Sets the graph-level random seed for the default graph.
setdiff1d(...)
: Computes the difference between two lists of numbers or strings.
shape(...)
: Returns the shape of a tensor.
shape_n(...)
: Returns shape of tensors.
sigmoid(...)
: Computes sigmoid of x
element-wise.
sign(...)
: Returns an element-wise indication of the sign of a number.
sin(...)
: Computes sine of x element-wise.
sinh(...)
: Computes hyperbolic sine of x element-wise.
size(...)
: Returns the size of a tensor.
slice(...)
: Extracts a slice from a tensor.
sort(...)
: Sorts a tensor.
space_to_batch(...)
: SpaceToBatch for 4-D tensors of type T.
space_to_batch_nd(...)
: SpaceToBatch for N-D tensors of type T.
space_to_depth(...)
: SpaceToDepth for tensors of type T.
sparse_add(...)
: Adds two tensors, at least one of each is a SparseTensor
. (deprecated arguments)
sparse_concat(...)
: Concatenates a list of SparseTensor
along the specified dimension. (deprecated arguments)
sparse_fill_empty_rows(...)
: Fills empty rows in the input 2-D SparseTensor
with a default value.
sparse_mask(...)
: Masks elements of IndexedSlices
.
sparse_matmul(...)
: Multiply matrix "a" by matrix "b".
sparse_maximum(...)
: Returns the element-wise max of two SparseTensors.
sparse_merge(...)
: Combines a batch of feature ids and values into a single SparseTensor
. (deprecated)
sparse_minimum(...)
: Returns the element-wise min of two SparseTensors.
sparse_placeholder(...)
: Inserts a placeholder for a sparse tensor that will be always fed.
sparse_reduce_max(...)
: Computes tf.sparse.maximum
of elements across dimensions of a SparseTensor. (deprecated arguments) (deprecated arguments)
sparse_reduce_max_sparse(...)
: Computes the max of elements across dimensions of a SparseTensor. (deprecated arguments)
sparse_reduce_sum(...)
: Computes tf.sparse.add
of elements across dimensions of a SparseTensor. (deprecated arguments) (deprecated arguments)
sparse_reduce_sum_sparse(...)
: Computes the sum of elements across dimensions of a SparseTensor. (deprecated arguments)
sparse_reorder(...)
: Reorders a SparseTensor
into the canonical, row-major ordering.
sparse_reset_shape(...)
: Resets the shape of a SparseTensor
with indices and values unchanged.
sparse_reshape(...)
: Reshapes a SparseTensor
to represent values in a new dense shape.
sparse_retain(...)
: Retains specified non-empty values within a SparseTensor
.
sparse_segment_mean(...)
: Computes the mean along sparse segments of a tensor.
sparse_segment_sqrt_n(...)
: Computes the sum along sparse segments of a tensor divided by the sqrt(N).
sparse_segment_sum(...)
: Computes the sum along sparse segments of a tensor.
sparse_slice(...)
: Slice a SparseTensor
based on the start
and size
.
sparse_softmax(...)
: Applies softmax to a batched N-D SparseTensor
.
sparse_split(...)
: Split a SparseTensor
into num_split
tensors along axis
. (deprecated arguments)
sparse_tensor_dense_matmul(...)
: Multiply SparseTensor (or dense Matrix) (of rank 2) "A" by dense matrix
sparse_tensor_to_dense(...)
: Converts a SparseTensor
into a dense tensor.
sparse_to_dense(...)
: Converts a sparse representation into a dense tensor. (deprecated)
sparse_to_indicator(...)
: Converts a SparseTensor
of ids into a dense bool indicator tensor.
sparse_transpose(...)
: Transposes a SparseTensor
split(...)
: Splits a tensor value
into a list of sub tensors.
sqrt(...)
: Computes element-wise square root of the input tensor.
square(...)
: Computes square of x element-wise.
squared_difference(...)
: Returns conj(x - y)(x - y) element-wise.
squeeze(...)
: Removes dimensions of size 1 from the shape of a tensor. (deprecated arguments)
stack(...)
: Stacks a list of rank-R
tensors into one rank-(R+1)
tensor.
stop_gradient(...)
: Stops gradient computation.
strided_slice(...)
: Extracts a strided slice of a tensor (generalized Python array indexing).
string_join(...)
: Perform element-wise concatenation of a list of string tensors.
string_split(...)
: Split elements of source
based on delimiter
. (deprecated arguments)
string_strip(...)
: Strip leading and trailing whitespaces from the Tensor.
string_to_hash_bucket(...)
: Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_hash_bucket_fast(...)
: Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_hash_bucket_strong(...)
: Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_number(...)
: Converts each string in the input Tensor to the specified numeric type.
substr(...)
: Return substrings from Tensor
of strings.
subtract(...)
: Returns x - y element-wise.
svd(...)
: Computes the singular value decompositions of one or more matrices.
switch_case(...)
: Create a switch/case operation, i.e. an integer-indexed conditional.
tables_initializer(...)
: Returns an Op that initializes all tables of the default graph.
tan(...)
: Computes tan of x element-wise.
tanh(...)
: Computes hyperbolic tangent of x
element-wise.
tensor_scatter_add(...)
: Adds sparse updates
to an existing tensor according to indices
.
tensor_scatter_nd_add(...)
: Adds sparse updates
to an existing tensor according to indices
.
tensor_scatter_nd_max(...)
: Apply a sparse update to a tensor taking the element-wise maximum.
tensor_scatter_nd_sub(...)
: Subtracts sparse updates
from an existing tensor according to indices
.
tensor_scatter_nd_update(...)
: Scatter updates
into an existing tensor according to indices
.
tensor_scatter_sub(...)
: Subtracts sparse updates
from an existing tensor according to indices
.
tensor_scatter_update(...)
: Scatter updates
into an existing tensor according to indices
.
tensordot(...)
: Tensor contraction of a and b along specified axes and outer product.
tile(...)
: Constructs a tensor by tiling a given tensor.
timestamp(...)
: Provides the time since epoch in seconds.
to_bfloat16(...)
: Casts a tensor to type bfloat16
. (deprecated)
to_complex128(...)
: Casts a tensor to type complex128
. (deprecated)
to_complex64(...)
: Casts a tensor to type complex64
. (deprecated)
to_double(...)
: Casts a tensor to type float64
. (deprecated)
to_float(...)
: Casts a tensor to type float32
. (deprecated)
to_int32(...)
: Casts a tensor to type int32
. (deprecated)
to_int64(...)
: Casts a tensor to type int64
. (deprecated)
trace(...)
: Compute the trace of a tensor x
.
trainable_variables(...)
: Returns all variables created with trainable=True
.
transpose(...)
: Transposes a
.
truediv(...)
: Divides x / y elementwise (using Python 3 division operator semantics).
truncated_normal(...)
: Outputs random values from a truncated normal distribution.
truncatediv(...)
: Returns x / y element-wise for integer types.
truncatemod(...)
: Returns element-wise remainder of division.
tuple(...)
: Group tensors together.
type_spec_from_value(...)
: Returns a tf.TypeSpec
that represents the given value
.
unique(...)
: Finds unique elements in a 1-D tensor.
unique_with_counts(...)
: Finds unique elements in a 1-D tensor.
unravel_index(...)
: Converts an array of flat indices into a tuple of coordinate arrays.
unsorted_segment_max(...)
: Computes the maximum along segments of a tensor.
unsorted_segment_mean(...)
: Computes the mean along segments of a tensor.
unsorted_segment_min(...)
: Computes the minimum along segments of a tensor.
unsorted_segment_prod(...)
: Computes the product along segments of a tensor.
unsorted_segment_sqrt_n(...)
: Computes the sum along segments of a tensor divided by the sqrt(N).
unsorted_segment_sum(...)
: Computes the sum along segments of a tensor.
unstack(...)
: Unpacks the given dimension of a rank-R
tensor into rank-(R-1)
tensors.
variable_axis_size_partitioner(...)
: Get a partitioner for VariableScope to keep shards below max_shard_bytes
.
variable_creator_scope(...)
: Scope which defines a variable creation function to be used by variable().
variable_op_scope(...)
: Deprecated: context manager for defining an op that creates variables.
variables_initializer(...)
: Returns an Op that initializes a list of variables.
vectorized_map(...)
: Parallel map on the list of tensors unpacked from elems
on dimension 0.
verify_tensor_all_finite(...)
: Assert that the tensor does not contain any NaN's or Inf's.
where(...)
: Return the elements, either from x
or y
, depending on the condition
.
where_v2(...)
: Returns the indices of non-zero elements, or multiplexes x
and y
.
while_loop(...)
: Repeat body
while the condition cond
is true.
wrap_function(...)
: Wraps the TF 1.x function fn into a graph function.
write_file(...)
: Writes contents
to the file at input filename
.
zeros(...)
: Creates a tensor with all elements set to zero.
zeros_like(...)
: Creates a tensor with all elements set to zero.
zeta(...)
: Compute the Hurwitz zeta function \(\zeta(x, q)\).
Other Members | |
---|---|
AUTO_REUSE |
<_ReuseMode.AUTO_REUSE: 1>
When passed in as the value for the |
COMPILER_VERSION |
'9.3.1 20200408'
|
CXX11_ABI_FLAG |
1
|
CXX_VERSION |
201703
|
GIT_VERSION |
'v2.11.0-94-ga3e2c692c18'
|
GRAPH_DEF_VERSION |
1286
|
GRAPH_DEF_VERSION_MIN_CONSUMER |
0
|
GRAPH_DEF_VERSION_MIN_PRODUCER |
0
|
MONOLITHIC_BUILD |
0
|
QUANTIZED_DTYPES |
|
VERSION |
'2.11.1'
|
version |
'2.11.1'
|
bfloat16 |
Instance of tf.dtypes.DType
16-bit bfloat (brain floating point). |
bool |
Instance of tf.dtypes.DType
Boolean. |
complex128 |
Instance of tf.dtypes.DType
128-bit complex. |
complex64 |
Instance of tf.dtypes.DType
64-bit complex. |
double |
Instance of tf.dtypes.DType
64-bit (double precision) floating-point. |
float16 |
Instance of tf.dtypes.DType
16-bit (half precision) floating-point. |
float32 |
Instance of tf.dtypes.DType
32-bit (single precision) floating-point. |
float64 |
Instance of tf.dtypes.DType
64-bit (double precision) floating-point. |
half |
Instance of tf.dtypes.DType
16-bit (half precision) floating-point. |
int16 |
Instance of tf.dtypes.DType
Signed 16-bit integer. |
int32 |
Instance of tf.dtypes.DType
Signed 32-bit integer. |
int64 |
Instance of tf.dtypes.DType
Signed 64-bit integer. |
int8 |
Instance of tf.dtypes.DType
Signed 8-bit integer. |
newaxis |
None
|
qint16 |
Instance of tf.dtypes.DType
Signed quantized 16-bit integer. |
qint32 |
Instance of tf.dtypes.DType
signed quantized 32-bit integer. |
qint8 |
Instance of tf.dtypes.DType
Signed quantized 8-bit integer. |
quint16 |
Instance of tf.dtypes.DType
Unsigned quantized 16-bit integer. |
quint8 |
Instance of tf.dtypes.DType
Unsigned quantized 8-bit integer. |
resource |
Instance of tf.dtypes.DType
Handle to a mutable, dynamically allocated resource. |
string |
Instance of tf.dtypes.DType
Variable-length string, represented as byte array. |
uint16 |
Instance of tf.dtypes.DType
Unsigned 16-bit (word) integer. |
uint32 |
Instance of tf.dtypes.DType
Unsigned 32-bit (dword) integer. |
uint64 |
Instance of tf.dtypes.DType
Unsigned 64-bit (qword) integer. |
uint8 |
Instance of tf.dtypes.DType
Unsigned 8-bit (byte) integer. |
variant |
Instance of tf.dtypes.DType
Data of arbitrary type (known at runtime). |