tf.compat.v1.layers.Conv2D

2D convolution layer (e.g. spatial convolution over images).

Inherits From: Conv2D, Layer, Layer, Module

Migrate to TF2

This API is a legacy api that is only compatible with eager execution and tf.function if you combine it with tf.compat.v1.keras.utils.track_tf1_style_variables

Please refer to tf.layers model mapping section of the migration guide to learn how to use your TensorFlow v1 model in TF2 with Keras.

The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv2D(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv2D(filters=3, kernels_size=3)

Description

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

filters Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
dilation_rate An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
activation Activation function. Set it to None to maintain a linear activation.
use_bias Boolean, whether the layer uses a bias.
kernel_initializer An initializer for the convolution kernel.
bias_initializer An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer Optional regularizer for the convolution kernel.
bias_regularizer Optional regularizer for the bias vector.
activity_regularizer Optional regularizer function for the output.
kernel_constraint Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name A string, the name of the layer.

graph

scope_name

Methods

apply

View source

convolution_op

View source

get_losses_for

View source

Retrieves losses relevant to a specific set of inputs.

Args
inputs Input tensor or list/tuple of input tensors.

Returns
List of loss tensors of the layer that depend on inputs.

get_updates_for

View source

Retrieves updates relevant to a specific set of inputs.

Args
inputs Input tensor or list/tuple of input tensors.

Returns
List of update ops of the layer that depend on inputs.