indicate whether there is a linear projection between the
input and the actual computation before the first layer. It can be
'linear_input', 'skip_input' or 'auto_select'. 'linear_input' (default)
always applies a linear projection of input onto RNN hidden state.
(standard RNN behavior). 'skip_input' is only allowed when input_size ==
num_units; 'auto_select' implies 'skip_input' when input_size ==
num_units; otherwise, it implies 'linear_input'.
direction
the direction model that the model operates. Can be either
'unidirectional' or 'bidirectional'
dropout
dropout rate, a number between [0, 1]. Dropout is applied between
each layer (no dropout is applied for a model with a single layer). When
set to 0, dropout is disabled.
starting value to initialize the bias (default is all
zeros).
name
VariableScope for the created subgraph; defaults to class name. This
only serves the default scope if later no scope is specified when
invoking call().
Raises
ValueError
if direction is invalid. Or dtype is not supported.
Attributes
canonical_bias_shapes
Shapes of Cudnn canonical bias tensors.
canonical_weight_shapes
Shapes of Cudnn canonical weight tensors.
direction
Returns unidirectional or bidirectional.
graph
DEPRECATED FUNCTION
input_mode
Input mode of first layer.
Indicates whether there is a linear projection between the input and the
actual computation before the first layer. It can be
'linear_input': (default) always applies a linear projection of input
onto RNN hidden state. (standard RNN behavior)
'skip_input': 'skip_input' is only allowed when input_size == num_units.
'auto_select'. implies 'skip_input' when input_size == num_units;
otherwise, it implies 'linear_input'.