View source on GitHub |
Mirrors vars to distribute across multiple devices and machines.
Inherits From: Strategy
tf.contrib.distribute.MirroredStrategy(
devices=None, num_gpus=None, num_gpus_per_worker=None, cross_device_ops=None,
auto_shard_dataset=False, cross_tower_ops=None
)
*** contrib version ***
This strategy uses one replica per device and sync replication for its multi-GPU version.
When cluster_spec
is given by the configure
method., it turns into the
mulit-worker version that works on multiple workers with in-graph replication.
Note: configure
will be called by higher-level APIs if running in
distributed environment.
There are several important concepts for distributed TensorFlow, e.g.
client
, job
, task
, cluster
, in-graph replication
and
synchronous training
and they have already been defined in the
TensorFlow's documentation.
The distribution strategy inherits these concepts as well and in addition to
that we also clarify several more concepts:
- In-graph replication: the
client
creates a singletf.Graph
that specifies tasks for devices on all workers. Theclient
then creates a client session which will talk to themaster
service of aworker
. Then themaster
will partition the graph and distribute the work to all participating workers. - Worker: A
worker
is a TensorFlowtask
that usually maps to one physical machine. We will have multipleworker
s with differenttask
index. They all do similar things except for one worker checkpointing model variables, writing summaries, etc. in addition to its ordinary work.
The multi-worker version of this class maps one replica to one device on a
worker. It mirrors all model variables on all replicas. For example, if you
have two worker
s and each worker
has 4 GPUs, it will create 8 copies of
the model variables on these 8 GPUs. Then like in MirroredStrategy, each
replica performs their computation with their own copy of variables unless in
cross-replica model where variable or tensor reduction happens.
Args | |
---|---|
devices
|
a list of device strings. |
num_gpus
|
number of GPUs. For local training, either specify devices or
num_gpus . In distributed training, this must be specified as number of
GPUs on each worker.
|
num_gpus_per_worker
|
number of GPUs per worker. This is the same as
num_gpus and only one of num_gpus and num_gpus_per_worker can be
specified.
|
cross_device_ops
|
optional, a descedant of CrossDeviceOps . If this is not
set, the configure method will try to find the best one.
|
auto_shard_dataset
|
whether to auto-shard the dataset when there are multiple workers. |
cross_tower_ops
|
Deprecated alias for cross_device_ops .
|
Attributes | |
---|---|
extended
|
tf.distribute.StrategyExtended with additional methods.
|
num_replicas_in_sync
|
Returns number of replicas over which gradients are aggregated. |
Methods
experimental_distribute_dataset
experimental_distribute_dataset(
dataset
)
Distributes a tf.data.Dataset instance provided via dataset
.
The returned distributed dataset can be iterated over similar to how regular datasets can. NOTE: Currently, the user cannot add any more transformations to a distributed dataset.
The following is an example:
strategy = tf.distribute.MirroredStrategy()
# Create a dataset
dataset = dataset_ops.Dataset.TFRecordDataset([
"/a/1.tfr", "/a/2.tfr", "/a/3.tfr", "/a/4.tfr"])
# Distribute that dataset
dist_dataset = strategy.experimental_distribute_dataset(dataset)
# Iterate over the distributed dataset
for x in dist_dataset:
# process dataset elements
strategy.experimental_run_v2(train_step, args=(x,))
We will assume that the input dataset is batched by the global batch size. With this assumption, we will make a best effort to divide each batch across all the replicas (one or more workers).
In a multi-worker setting, we will first attempt to distribute the dataset by attempting to detect whether the dataset is being created out of ReaderDatasets (e.g. TFRecordDataset, TextLineDataset, etc.) and if so, attempting to shard the input files. Note that there has to be at least one input file per worker. If you have less than one input file per worker, we suggest that you should disable distributing your dataset using the method below.
If that attempt is unsuccessful (e.g. the dataset is created from a
Dataset.range), we will shard the dataset evenly at the end by appending a
.shard
operation to the end of the processing pipeline. This will cause
the entire preprocessing pipeline for all the data to be run on every
worker, and each worker will do redundant work. We will print a warning
if this method of sharding is selected. In this case, consider using
experimental_distribute_datasets_from_function
instead.
You can disable dataset sharding across workers using the auto_shard
option in tf.data.experimental.DistributeOptions
.
Within each worker, we will also split the data among all the worker devices (if more than one a present), and this will happen even if multi-worker sharding is disabled using the method above.
If the above batch splitting and dataset sharding logic is undesirable,
please use experimental_distribute_datasets_from_function
instead, which
does not do any automatic splitting or sharding.
Args | |
---|---|
dataset
|
tf.data.Dataset that will be sharded across all replicas using
the rules stated above.
|
Returns | |
---|---|
A "distributed Dataset ", which acts like a tf.data.Dataset except
it produces "per-replica" values.
|
experimental_distribute_datasets_from_function
experimental_distribute_datasets_from_function(
dataset_fn
)
Distributes tf.data.Dataset
instances created by calls to dataset_fn
.
dataset_fn
will be called once for each worker in the strategy. Each
replica on that worker will dequeue one batch of inputs from the local
Dataset
(i.e. if a worker has two replicas, two batches will be dequeued
from the Dataset
every step).
This method can be used for several purposes. For example, where
experimental_distribute_dataset
is unable to shard the input files, this
method might be used to manually shard the dataset (avoiding the slow
fallback behavior in experimental_distribute_dataset
). In cases where the
dataset is infinite, this sharding can be done by creating dataset replicas
that differ only in their random seed.
experimental_distribute_dataset
may also sometimes fail to split the
batch across replicas on a worker. In that case, this method can be used
where that limitation does not exist.
The dataset_fn
should take an tf.distribute.InputContext
instance where
information about batching and input replication can be accessed:
def dataset_fn(input_context):
batch_size = input_context.get_per_replica_batch_size(global_batch_size)
d = tf.data.Dataset.from_tensors([[1.]]).repeat().batch(batch_size)
return d.shard(
input_context.num_input_pipelines, input_context.input_pipeline_id)
inputs = strategy.experimental_distribute_datasets_from_function(dataset_fn)
for batch in inputs:
replica_results = strategy.experimental_run_v2(replica_fn, args=(batch,))
Args | |
---|---|
dataset_fn
|
A function taking a tf.distribute.InputContext instance and
returning a tf.data.Dataset .
|
Returns | |
---|---|
A "distributed Dataset ", which acts like a tf.data.Dataset except
it produces "per-replica" values.
|
experimental_local_results
experimental_local_results(
value
)
Returns the list of all local per-replica values contained in value
.
Args | |
---|---|
value
|
A value returned by experimental_run() , experimental_run_v2() ,
extended.call_for_each_replica() , or a variable created in scope .
|
Returns | |
---|---|
A tuple of values contained in value . If value represents a single
value, this returns (value,).
|
experimental_make_numpy_dataset
experimental_make_numpy_dataset(
numpy_input, session=None
)
Makes a tf.data.Dataset for input provided via a numpy array.
This avoids adding numpy_input
as a large constant in the graph,
and copies the data to the machine or machines that will be processing
the input.
Note that you will likely need to use tf.distribute.Strategy.experimental_distribute_dataset with the returned dataset to further distribute it with the strategy.
Example:
numpy_input = np.ones([10], dtype=np.float32)
dataset = strategy.experimental_make_numpy_dataset(numpy_input)
dist_dataset = strategy.experimental_distribute_dataset(dataset)
Args | |
---|---|
numpy_input
|
A nest of NumPy input arrays that will be converted into a
dataset. Note that lists of Numpy arrays are stacked, as that is normal
tf.data.Dataset behavior.
|
session
|
(TensorFlow v1.x graph execution only) A session used for initialization. |
Returns | |
---|---|
A tf.data.Dataset representing numpy_input .
|
experimental_run
experimental_run(
fn, input_iterator=None
)
Runs ops in fn
on each replica, with inputs from input_iterator
.
DEPRECATED: This method is not available in TF 2.x. Please switch
to using experimental_run_v2
instead.
When eager execution is enabled, executes ops specified by fn
on each
replica. Otherwise, builds a graph to execute the ops on each replica.
Each replica will take a single, different input from the inputs provided by
one get_next
call on the input iterator.
fn
may call tf.distribute.get_replica_context()
to access members such
as replica_id_in_sync_group
.
Args | |
---|---|
fn
|
The function to run. The inputs to the function must match the outputs
of input_iterator.get_next() . The output must be a tf.nest of
Tensor s.
|
input_iterator
|
(Optional) input iterator from which the inputs are taken. |
Returns | |
---|---|
Merged return value of fn across replicas. The structure of the return
value is the same as the return value from fn . Each element in the
structure can either be PerReplica (if the values are unsynchronized),
Mirrored (if the values are kept in sync), or Tensor (if running on a
single replica).
|
experimental_run_v2
experimental_run_v2(
fn, args=(), kwargs=None
)
Run fn
on each replica, with the given arguments.
Executes ops specified by fn
on each replica. If args
or kwargs
have
"per-replica" values, such as those produced by a "distributed Dataset
",
when fn
is executed on a particular replica, it will be executed with the
component of those "per-replica" values that correspond to that replica.
fn
may call tf.distribute.get_replica_context()
to access members such
as all_reduce
.
All arguments in args
or kwargs
should either be nest of tensors or
per-replica objects containing tensors or composite tensors.
Args | |
---|---|
fn
|
The function to run. The output must be a tf.nest of Tensor s.
|
args
|
(Optional) Positional arguments to fn .
|
kwargs
|
(Optional) Keyword arguments to fn .
|
Returns | |
---|---|
Merged return value of fn across replicas. The structure of the return
value is the same as the return value from fn . Each element in the
structure can either be "per-replica" Tensor objects or Tensor s
(for example, if running on a single replica).
|
make_dataset_iterator
make_dataset_iterator(
dataset
)
Makes an iterator for input provided via dataset
.
Data from the given dataset will be distributed evenly across all the compute replicas. We will assume that the input dataset is batched by the per-replica batch size.
The user could also use make_input_fn_iterator
if they want to
customize which input is fed to which replica/worker etc.
Args | |
---|---|
dataset
|
tf.data.Dataset that will be distributed evenly across all
replicas.
|
Returns | |
---|---|
An tf.distribute.InputIterator which returns inputs for each step of the
computation. User should call initialize on the returned iterator.
|
make_input_fn_iterator
make_input_fn_iterator(
input_fn, replication_mode=tf.distribute.InputReplicationMode.PER_WORKER
)
Returns an iterator split across replicas created from an input function.
DEPRECATED: This method is not available in TF 2.x.
The input_fn
should take an tf.distribute.InputContext
object where
information about batching and input sharding can be accessed:
def input_fn(input_context):
batch_size = input_context.get_per_replica_batch_size(global_batch_size)
d = tf.data.Dataset.from_tensors([[1.]]).repeat().batch(batch_size)
return d.shard(input_context.num_input_pipelines,
input_context.input_pipeline_id)
with strategy.scope():
iterator = strategy.make_input_fn_iterator(input_fn)
replica_results = strategy.experimental_run(replica_fn, iterator)
The tf.data.Dataset
returned by input_fn
should have a per-replica
batch size, which may be computed using
input_context.get_per_replica_batch_size
.
Args | |
---|---|
input_fn
|
A function taking a tf.distribute.InputContext object and
returning a tf.data.Dataset .
|
replication_mode
|
an enum value of tf.distribute.InputReplicationMode .
Only PER_WORKER is supported currently, which means there will be
a single call to input_fn per worker. Replicas will dequeue from the
local tf.data.Dataset on their worker.
|
Returns | |
---|---|
An iterator object that should first be .initialize() -ed. It may then
either be passed to strategy.experimental_run() or you can
iterator.get_next() to get the next value to pass to
strategy.extended.call_for_each_replica() .
|
reduce
reduce(
reduce_op, value, axis=None
)
Reduce value
across replicas.
Given a per-replica value returned by experimental_run_v2
, say a
per-example loss, the batch will be divided across all the replicas. This
function allows you to aggregate across replicas and optionally also across
batch elements. For example, if you have a global batch size of 8 and 2
replicas, values for examples [0, 1, 2, 3]
will be on replica 0 and
[4, 5, 6, 7]
will be on replica 1. By default, reduce
will just
aggregate across replicas, returning [0+4, 1+5, 2+6, 3+7]
. This is useful
when each replica is computing a scalar or some other value that doesn't
have a "batch" dimension (like a gradient). More often you will want to
aggregate across the global batch, which you can get by specifying the batch
dimension as the axis
, typically axis=0
. In this case it would return a
scalar 0+1+2+3+4+5+6+7
.
If there is a last partial batch, you will need to specify an axis so
that the resulting shape is consistent across replicas. So if the last
batch has size 6 and it is divided into [0, 1, 2, 3] and [4, 5], you
would get a shape mismatch unless you specify axis=0
. If you specify
tf.distribute.ReduceOp.MEAN
, using axis=0
will use the correct
denominator of 6. Contrast this with computing reduce_mean
to get a
scalar value on each replica and this function to average those means,
which will weigh some values 1/8
and others 1/4
.
Args | |
---|---|
reduce_op
|
A tf.distribute.ReduceOp value specifying how values should
be combined.
|
value
|
A "per replica" value, e.g. returned by experimental_run_v2 to
be combined into a single tensor.
|
axis
|
Specifies the dimension to reduce along within each
replica's tensor. Should typically be set to the batch dimension, or
None to only reduce across replicas (e.g. if the tensor has no batch
dimension).
|
Returns | |
---|---|
A Tensor .
|
scope
scope()
Returns a context manager selecting this Strategy as current.
Inside a with strategy.scope():
code block, this thread
will use a variable creator set by strategy
, and will
enter its "cross-replica context".
Returns | |
---|---|
A context manager. |
update_config_proto
update_config_proto(
config_proto
)
Returns a copy of config_proto
modified for use with this strategy.
DEPRECATED: This method is not available in TF 2.x.
The updated config has something needed to run a strategy, e.g. configuration to run collective ops, or device filters to improve distributed training performance.
Args | |
---|---|
config_proto
|
a tf.ConfigProto object.
|
Returns | |
---|---|
The updated copy of the config_proto .
|