TensorFlow 2 version | View source on GitHub |
A CategoricalColumn
that returns identity values.
tf.feature_column.categorical_column_with_identity(
key, num_buckets, default_value=None
)
Use this when your inputs are integers in the range [0, num_buckets)
, and
you want to use the input value itself as the categorical ID. Values outside
this range will result in default_value
if specified, otherwise it will
fail.
Typically, this is used for contiguous ranges of integer indexes, but
it doesn't have to be. This might be inefficient, however, if many of IDs
are unused. Consider categorical_column_with_hash_bucket
in that case.
For input dictionary features
, features[key]
is either Tensor
or
SparseTensor
. If Tensor
, missing values can be represented by -1
for int
and ''
for string, which will be dropped by this feature column.
In the following examples, each input in the range [0, 1000000)
is assigned
the same value. All other inputs are assigned default_value
0. Note that a
literal 0 in inputs will result in the same default ID.
Linear model:
video_id = categorical_column_with_identity(
key='video_id', num_buckets=1000000, default_value=0)
columns = [video_id, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
Embedding for a DNN model:
columns = [embedding_column(video_id, 9),...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
Args | |
---|---|
key
|
A unique string identifying the input feature. It is used as the
column name and the dictionary key for feature parsing configs, feature
Tensor objects, and feature columns.
|
num_buckets
|
Range of inputs and outputs is [0, num_buckets) .
|
default_value
|
If None , this column's graph operations will fail for
out-of-range inputs. Otherwise, this value must be in the range
[0, num_buckets) , and will replace inputs in that range.
|
Returns | |
---|---|
A CategoricalColumn that returns identity values.
|
Raises | |
---|---|
ValueError
|
if num_buckets is less than one.
|
ValueError
|
if default_value is not in range [0, num_buckets) .
|