TensorFlow 2 version | View source on GitHub |
Abstract object representing an RNN cell.
Inherits From: Layer
tf.keras.layers.AbstractRNNCell(
trainable=True, name=None, dtype=None, dynamic=False, **kwargs
)
This is the base class for implementing RNN cells with custom behavior.
Every RNNCell
must have the properties below and implement call
with
the signature (output, next_state) = call(input, state)
.
Examples:
class MinimalRNNCell(AbstractRNNCell):
def __init__(self, units, **kwargs):
self.units = units
super(MinimalRNNCell, self).__init__(**kwargs)
@property
def state_size(self):
return self.units
def build(self, input_shape):
self.kernel = self.add_weight(shape=(input_shape[-1], self.units),
initializer='uniform',
name='kernel')
self.recurrent_kernel = self.add_weight(
shape=(self.units, self.units),
initializer='uniform',
name='recurrent_kernel')
self.built = True
def call(self, inputs, states):
prev_output = states[0]
h = K.dot(inputs, self.kernel)
output = h + K.dot(prev_output, self.recurrent_kernel)
return output, output
This definition of cell differs from the definition used in the literature. In the literature, 'cell' refers to an object with a single scalar output. This definition refers to a horizontal array of such units.
An RNN cell, in the most abstract setting, is anything that has
a state and performs some operation that takes a matrix of inputs.
This operation results in an output matrix with self.output_size
columns.
If self.state_size
is an integer, this operation also results in a new
state matrix with self.state_size
columns. If self.state_size
is a
(possibly nested tuple of) TensorShape object(s), then it should return a
matching structure of Tensors having shape [batch_size].concatenate(s)
for each s
in self.batch_size
.
Attributes | |
---|---|
output_size
|
Integer or TensorShape: size of outputs produced by this cell. |
state_size
|
size(s) of state(s) used by this cell.
It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes. |
Methods
get_initial_state
get_initial_state(
inputs=None, batch_size=None, dtype=None
)