Creates a _RealValuedColumn
for dense numeric data.
tf.contrib.layers.real_valued_column(
column_name, dimension=1, default_value=None, dtype=tf.dtypes.float32,
normalizer=None
)
Args |
column_name
|
A string defining real valued column name.
|
dimension
|
An integer specifying dimension of the real valued column. The
default is 1.
|
default_value
|
A single value compatible with dtype or a list of values
compatible with dtype which the column takes on during tf.Example parsing
if data is missing. When dimension is not None, a default value of None
will cause tf.io.parse_example to fail if an example does not contain this
column. If a single value is provided, the same value will be applied as
the default value for every dimension. If a list of values is provided,
the length of the list should be equal to the value of dimension . Only
scalar default value is supported in case dimension is not specified.
|
dtype
|
defines the type of values. Default value is tf.float32. Must be a
non-quantized, real integer or floating point type.
|
normalizer
|
If not None, a function that can be used to normalize the value
of the real valued column after default_value is applied for parsing.
Normalizer function takes the input tensor as its argument, and returns
the output tensor. (e.g. lambda x: (x - 3.0) / 4.2). Note that for
variable length columns, the normalizer should expect an input_tensor of
type SparseTensor .
|
Returns |
A _RealValuedColumn.
|
Raises |
TypeError
|
if dimension is not an int
|
ValueError
|
if dimension is not a positive integer
|
TypeError
|
if default_value is a list but its length is not equal to the
value of dimension .
|
TypeError
|
if default_value is not compatible with dtype.
|
ValueError
|
if dtype is not convertible to tf.float32.
|